GEOLOGICA MACEDONICA
GEOLOGICA MACEDONICA

Published by: – Издава:
The "Goce Delčev" University, Faculty of Natural and Technical Sciences, Štip, Republic of Macedonia
Универзитет „Гоце Делчев“, Факултет за природни и технички науки, Штип, Република Македонија

EDITORIAL BOARD
Todor Serafimovski (R. Macedonia, Editor in Chief), Prof. Blažo (R. Macedonia, Editor), David Alderton (UK), Tadej Dolenc (R. Slovenia), Ivan Zagorchev (R. Bulgaria), Wolfgang Todt (Germany), acad. Nikolay S. Bortnikov (Russia), Clark Burchfiel (USA), Thierry Augé (France), Todor Delipetrov (R. Macedonia), Milorad Jovanovski (R. Macedonia), Spomenko Mihajlović (Serbia), Dragan Milovanović (Serbia), Dejan Prelević (Germany), Albrecht von Quadt (Switzerland)

УРЕДУВАЧКИ ОДБОР
Тодор Серафимовски (Р. Македонија, главен уредник), Блажо Боев (Р. Македонија, уредник), Дејвид Олдертон (В. Британија), Тадеј Доленец (Р. Словенија), Иван Загорчев (Р. Бугарска), Волфганг Тод (Германија), акад. Николай С. Бортников (Русија), Кларк Барвфилд (САД), Тиери Оже (Франција), Тодор Делипетров (Р. Македонија), Владо Берманец (Хрватска), Милорад Јовановски (Р. Македонија), Споменко Михајловић (Србија), Драган Миловановић (Србија), Дејан Прелевић (Германија), Албрехт вон Квад (Швајцарија)

Language editor Лектура
Marijana Kroteva Маријана Кротева
(English) (англиски)
Georgi Georgievski, Ph. D. д-р Георги Георгиевски
(Macedonian) (македонски)

Technical editor Технички уредник
Bлагоја Богатиноски Благоја Богатиноски
Proof-reader Коректор
Алена Георгиевска Алена Георгиевска

Address Адреса
GEOLOGICA MACEDONICA РЕДАКЦИЈА
EDITORIAL BOARD Факултет за природни и технички науки
Faculty of Natural and Technical Sciences поиш. фах 96
P. O. Box 96
MK-2000 Štip, Republic of Macedonia
Tel. ++ 389 032 550 575
E-mail: todor.serafimovski@ugd.edu.mk

400 copies Тираж: 400
Published yearly Излегува еднаш годишно
Printed by: Печати:
2nd Augus – Štip 2нд Август – Штип
The edition was published in December 2010 Бројот е отпечатен во декември 2010

Photo on the cover: На корицата:
Argillitic alteration, Kadiica, Republic of Macedonia Аргилитска алтерация, Кадицица, Република Македонија
СОДРЖИНА

Иван Боев, Соња Лепиткова, Тена Шијакова-Иванова
Траце елементи и њине продукцији доминираат в јужна Тиквешка област................................. 73–84

Воjo Мирчовски, Гоше Петров, Владо Мирчовски
Артеска минерална вода од локалитетот Родопци, Тетово ... 85–90

Добриела Рогожарева
Типови на хидротермални алтерации во наоѓалиштето „Иловица“ .. 91–101

Орце Спасовски, Трајче Митев
Тешки метали во водата од сливото подрачје на хидроакумулативата Мавровица –
Источна Македонија .. 103–108

Лидја Курешевиќ
Можност за употреба на гранитоидот Кремик како архитектонски камен.......................... 109–114

Упатство за авторите .. 115–116
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivan Boev, Sonja Lepitkova, Tena Šijakova-Ivanova</td>
</tr>
<tr>
<td>Trace elements in wines produced at home in the Tikveš area .. 73–84</td>
</tr>
<tr>
<td>Vojo Mirčovski, Goše Petrov, Vlado Mirčovski</td>
</tr>
<tr>
<td>Artesian mineral water of the Raotince site, Tetovo ... 85–90</td>
</tr>
<tr>
<td>Dobriela Rogožareva</td>
</tr>
<tr>
<td>Types of hydrothermal alteration within the Ilovitza deposit .. 91–101</td>
</tr>
<tr>
<td>Orce Spasovski, Trajče Mitev</td>
</tr>
<tr>
<td>Heavy metals in the water from the drain-basin of the Mavrovica hydro-acumulation – Eastern Macedonia ... 103–108</td>
</tr>
<tr>
<td>Lidja Kurešević</td>
</tr>
<tr>
<td>The possibility of use of Kremić granitoid (Serbia) as an architectural stone 109–114</td>
</tr>
<tr>
<td>Instructions to authors 115–116</td>
</tr>
</tbody>
</table>

TRACE ELEMENTS IN WINES PRODUCED AT HOME IN THE TIKVEŠ AREA

Ivan Boev¹, Sonja Lepitkova², Tena Šijakova-Ivanova²

¹Goce Delčev University, Štip, Republic of Macedonia
²Faculty of Natural and Technical Sciences, "Goce Delčev" University, Goce Delčev 89, MK-2000, Štip, Republic of Macedonia
ivan.boev@ugd.edu.mk

A b s t r a c t: In this paper the results of the geochemical research of the presence of trace elements (Al, As, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, V and Zn) in the wines produced at home in the Tikveš area with the application of the methods of ICP-AES and (ETAAS) are shown. The paper also presents the correlations made on the basis the presence of certain trace elements in the soil on which the specified variety of grape wine is grown and the same elements in the wine which is produced from that type of grape. The correlations basically point to the fact that there is no great correlation between the presence of the determined trace elements in the soil and wine produced at home. Namely, these correlations for the determined geochemical pairs are the following: Alsoil/Alwine (0.04); Assoil/Aswine (0.11); Ba_soil/Bawine (0.23); Ca_soil/Cawine (0.02); Cd_soil/Cdwine (–0.06); Co_soil/Cowine (–0.26); Cr_soil/Crwine (–0.04); Cu_soil/Cuwine (0.04); Mg_soil/Mgwine (–0.30); Mn_soil/Mnwine (–0.40); Na_soil/Nawine (0.11); Nis_oil/Niswine (0.03); Pb_soil/Pbwine (0.27); The lack of significant correlations between the given geochemical pairs is a result of a few moments such as: (1) the presence of trace elements in the soil is determined up to the depth of 30 cm. (2) trace elements in soils are present mainly in the silicate matrix from which the elements are not easily excreted into aqueous solutions. (3) the root system of the grape vine is at a much greater depth of 30 cm.

Key words: wine; geochemistry; elements in traces; correlations

INTRODUCTION

Wine is a drink that is an integral part of the human diet and it has played a significant role in the development of the society, religion and culture. Like any other skill, the production of wine was based on empirical findings, perception of some external phenomena, without getting into the essence of the process. This way of producing wine for centuries until Pasteur opened the doors of science for understanding the processes that occur while producing wine with his book, "Study on Wine" (1866).

The wine as a product of alcoholic fermentation of the must contains a number of compounds, some of which are in the must, while others occurred during the alcoholic fermentation, with the transformation of sugar into some other compounds. All of these compounds enter the geo-chemical composition of the wine, thus defining the quality that is manifested by the organoleptic properties of the wine. For the quality of wine not only qualitative composition is important, but also the quantification of compounds and elements in it. The determination of the geochemical analysis of the composition of wine is made by using analytical methods. Some of these analytical methods are simple and fast, and some are complex and require more time for analysis.

The results concerning the determination of the presence of trace elements in wines that are produced at wineries in the area Tikveš, as in other wine regions in the country, can be found in the works of: Cvetković et al. (2002a); Cvetković et al. (2002b); Cvetković et al. (2002c); Stafilov et al. (2009); Karadjova et al. (2007); Karadjova et al. (2004); Cvetković et al. (2001); Tasev et al. (2004, 2006, 2005). Likewise, the results concerning the geological, pedo-genetical and the geochemical characteristics of the region of Tikveš and its wider surrounding can be found in the works of: Boev et al. (2005), Stafilov et al. (2008).
Physical-geographic characteristics of the Tikveš area

Among the valleys in Macedonia which by their position differ from one another, the Tikveš Valley stands out as a separate entity with its geographical, geomorphologic, and the anthropological-geographical features. With an area of 2120 km² the region Tikveš occupies a significant part of the territory of Macedonia. The Tikveš valley is constrained in the south by the Mariovsko-Meglanski Mountains, whose ranges are up to 1700 meters. The mountain heights are also well expressed in the east and west. To the west of the valley is the mountain "Borila" of 1500 meters and in the south is the mountain "Ballina" with 1400 m and Karadak with 750 meters height. This Tikveš valley constrained with mountains is cut by the river Varda on the northern side, in the west by the river Crna Reka, while the river Luda Mara runs through the middle of the valley.

In a narrower geographical sense, the Tikveš valley lies: in the north by the river basin Bregalnica opposite the villages Viničani and Nogaevci and then turns above the villages Gradsko and Dolno Ćićevo, then above the villages Sirkovo, Mrzen Oraovec, Fariš, Raec up to the village Nikodin, to the hill Nozhot and up to the village Toplice.

The western boundary of the valley begins from the locality Toplice across the road Gradsko–Prilep to the villages Raec and Drenovo towards the Tikveš Lake. It covers the localities Suva Gora with the surroundings of the villages Begnište, Košani and Dabnište. The area continues southward the villages Vataša, Moklište and the Vitačevo plateau. This section covers the villages of the locality Belgrade with the villages Gorni and Dolni Disan, Prždevo and Demir Kapija. The south side ends with the village Dren.

The East side moves across the river Vardar in the direction of the village Korešnica, cuts the Lipkovska river and goes toward the villages Brusnik and Pepelište, then passes the river Vardar and the railway line Skopje–Gevgelija to the village Ulanici and ends with the mouth of the rivers Vardar and Bregalnica.

Climate

The climate has a great impact on the development of the grapevine in terms of quality and quality of the grapes. As an important factor in the development of the grapevine, the climate consists of the air temperature, the sunlight, and the humidity of the air currents which are present in a given area. Each of these factors has its own influence upon the grapevine which is seen through the growth of the grapevine, the level of ripening of the fruit and the production of quality ingredients which from grapes pass into wine.

The geographical position and the relief of the Tikveš area are the main factors which affect the totality of the climate characteristics. The Tikveš area is an area of two intersected climates – continental and Mediterranean. The local mountain climate has less impact.

The influence of the continental climate comes from the north along the Vardar River and the Bregalnica River. As a result, we have short and quite cold periods.

On the other hand, the Mediterranean climate comes from the Aegean Sea in the south along the valley of the river Vardar and it results in warm winters with relatively high temperatures.

The influence of the local mountain climate is limited and if there is any, it is highly felt in the mountain part of the area. Under the influence of these climates a special modification of the Mediterranean climate is produced in this region. As a result, the Tikveš region is rich in vegetation.

Temperature

The grapevine is a domestic plant which can vegetate and live in extremely high temperatures in the areas with warm climate, as is the case in the Tikveš area. This region belongs to very warm areas and this factor has a very favorable influence on the development of viticulture. The mean annual temperature in Kavadarci is 18.9 °C, and 19.5 °C in Demir Kapija. The warmest month in Kavadarci are July and August with an average temperature of 24.7 °C, and the coldest is January with an average temperature of 1,5 °C.

The Tikveš region is characterized by relatively high temperatures, especially during the summer months. The highest temperature of 44.5 °C in the Republic of Macedonia was registered in Demir Kapija on 22.07.1952 year, whereas in Kavadarci it was 41°C. The absolute minimum of the air in Kavadarci was noticed on 27.01.1952 and it was –17°C, and in Demir Kapija it was –22 °C.

The mean number of summer days when the air temperature is over 30 °C for Demir Kapija is 68, and it is a bit less for Kavadarci.
Rainfalls

The largest part of the Tikveš region is characterized by small amounts of rainfall and the territory around Gradsko is considered to be the site with the least rainfall per square meter in the Republic of Macedonia. The mean amount of rainfall is 484 mm in Kavadarci. July and August are the most arid summer months in Kavadarci with the mean monthly amount of 23 to 27 mm.

The average annual days with rainfalls in Kavadarci range from 63 to 112 days. If the total amount of rainfall is divided by the number of rainy days, the average is 5 mm of rain on a rainy day.

Geological characteristics of the Tikveš area

The geological characteristics of the area Tikveš have so far been the subject of research by a growing number of geologists, but the most complete description can be found in the works of Rakićević et al. (1965) and Hristov et al. (1965). Based on these studies made within the development of the basic geological map of the Republic of Macedonia in Tikveš area the litho-stratigraphic sequence has the following order (Fig. 1).

The oldest formations have northwest-southeast direction delineation (NW-SE) and belong to the inner part of the Vardar zone. The lowest Paleozoic (Pz) metamorphic complex is represented by two series as follows: a series of amphibole and amphibole-chlorite schists with layers of marbles and a series of quartz-schist with quartz-sericite pro-layers of marble and fillites. Along the rupture structures in the Vardar zone in the form of elongated tapes and interspersed lenses serpentinities appear. The furthest south-west of the area Tikveš is represented with marbles and dolomites, which are probably of Devonian age.

Through a series of Paleozoic metamorphic rocks developed the Mesozoic (Mz) formations, mainly from the Late Cretaceous age. The Turonian (K2) sandstones, massive conglomerates and limestone extend to the southwest and the west Tikveš of the area. The diabases and the submarines outbursts of spilrites are common in the lower parts of this sequence, where also smaller masses of gabbros appear. The Paleozoic and Mesozoic rocks cover nearly 39 km² in the southwest and west part of the area Tikveš.

The complex of Tertiary and Quaternary sediments covers most of the Tikveš area. The Upper Eocene (4E3) flysch sediments and yellow sandstones occur along the valleys of the rivers Vardar, Crna River and Luda Mara, as well as in a fraction of the Tikveš basin. These sediments with depth to 3500 m cover about 34 km² mainly in the northern part of the Tikveš area.

The Tikveš basin is filled with Pliocene (P1) sediments, bordering with the Vardar River in the north and the Paleozoic-Mesozoic formation which covers the north-west-southeast. This area is mainly represented by sandy series of different sands. These series are homogeneous, containing mostly yellow sands with low content of coarse sandy clay (pebble sandy clay) and fine-bean gray sandstone, poor in fossil remains. The Pliocene (P1) sediments cover most (about 182 km²) of the central part of the area Tikveš.

Southeast of Kavadarci there were Quaternary (Q) pyroclastic volcanites with tuffs, Brecias and agglomerates, which covered around 25 km².

The Quaternary period is represented by diluvium (d), river terraces (t) and alluvium (al). The diluvial sediments (12 km²) contain coarse material from the surrounding rocks, mixed with sand and clay material. Along the rivers Vardar, Crna and Luda Mara terrace sediments are formed (23 km²). The terraces contain gravel, sand and
clay. Alluvial sediments (40 km²) cover the flooding plains of the rivers Vardar and Crna and Luda Mara and consist mainly of sand and clay.

Pedo-genetical characteristics of the Tikveš area

The pedo-genetical characteristics of the area Tikveš are shown based upon the detailed pedological description of the present types of soils (Fig. 2):

![Pedological map of Tikveš area](image)

Automorphyc soils

Lithosols with the profile type (A)-R1-R2 are developed or poorly developed soils with a maximum depth of 20 cm of the solum, formed on a strong or weak cracked rock. These soils have low productive capacity due to the shallow solum, high skeleton content and low content of clay. These soils have no importance for the agricultural production.

Rogosols with the profile type (A)-C are formed on loose sediments. They are formed by accelerated erosion of the soil profile of previously developed soils with initial pedogenetical processes that lead to the creation of poorly developed horizon (A). These soils are prone to erosion, so we recommend anti erosive safeguards. Rogosols are characterized by lower fertility than the neighboring soils from which they were made by erosion.

Soil complex from regosols and lithosols in Tikveš appears on the terrains that are characterized by a greater slope, west of the Lake Tikveš in the areas of the villages Debrštë, Kamen Dol and Kruševica and northwest up to the village of Dolno Čičevo.

The soil complex of lithosols, regosols and renzines appears quite often. Lithosols are noted on the highest parts of the ground. Very often on the surface where there is a presence of lithosol solid rocks can be noticed as well. Rogosols appear on fields that are characterized by a slightly larger slope where erosion by the solum is progressively rejuvenating, whereas the rendzinas appear on flat fields and at the foot of the hills where there is an outbreak of frequent change of rogosols at small distances. This soil complex is widespread in the area of the village Drenovo, then in the villages Sirkovo, Kamen Dol, Mrzen, Oreovec, Debrštë and east of the district Gradsko on the left side of the river Vardar.

Soil complex lithosols, regosols and rankers appears on the plateau Vitečëvo near Kavadarci. Lithosols and rankers are formed on the basis of compact volcanic tuffs, and the regosols are formed by erosion of the humus-accumulative horizon of the rankers.

Diluvial (coluvial) soils are defined as undeveloped and poorly developed soils with the possible (A) or Ar horizon. They have a simple construction of the profile of the type (A)-C. They are formed by erosion and transportation of substrates and soils from higher terrain by means of surface waters and water from torrential streams and modern sedimentation of the such eroded material in the foot parts of the ground. Horizon (A) contains a slightly larger amount of humus horizon than (C), but there are no visible signs of
the formation of structural aggregates. The diluvial soils have large horizontal and vertical (in depth profile) heterogeneity of all properties. In comparison with the alluvial bordering soils they have lower productive capacity.

Renzins are soils with profile of the type-A-AC-C. They are formed upon the bulk silicate-carbonate substrate with a mollic A horizon. The depth of humus horizon is 40 cm it has a dark gray, dark brown to black color with well-expressed structure. The carbonates emerge from the surface or at a certain depth. Most renzins are extensively used in the agriculture and one part of them is under pastures. On a map they are represented as a complex of rendzines and regosols, and a complex of litosols, regosols and rendzines. The complex of rendzines and regosols occupies the largest surface of the Tikveš area. In the vicinity of the village of Dolno Cičevo small areas of cinnamon forest soils and regosoli appear.

Vertisols are loamy soils formed on clay sediments with more than 30% of clay, which gives them a property of swelling (smektites) or on acidic rocks or ultra-acidic rocks whose decay provides larger quantities of clay. Vertisols in the Tikveš area are developed on tertiary clay sediments of a low wave relief with low inclination. They have the type of profile A-AC-C. The soil contains more than 30% of the clay horizon and has vertical properties: prismed cracks and distinctive structure. A horizon has a depth greater than 30 cm and AC horizon is typically 20–30 cm deep. In the Tikveš area thevertisols are isolated as an independent soil type. They prevail in the immediate vicinity of villages Ribarci, Trstenik and Vozarci and north of Kavadarci.

Chernozem is a soil type of the semiarid steppe regions with typical molic A0 horizon which is thicker than 40 cm and with a front horizon AC (25–0 cm). They contain CaCO₃ mostly from the surface and in the lower part of horizon A or AC. The horizon A has well expressed stable grain structure. In the Tikveš area chernozems often contain carbonates from the surface, and in some sections they are washed to some depth in solum. Chernozems were singled out as special pedological units (Fig. 2) north of the village Rosoman, whereas smaller areas are located east of the village Palikura and between the villages Timjanik and Dolni Disan.

Cinnamonic forest soils are soils with a profile of the type Ar-(B)-C or Ar-(B)C-C. They are characterized by the cambic horizon (B), which lies between A and C horizons. Cambic horizon (B) always contains more clay than the A horizon. It is more compact, with reduced capillary porosity, reduced stability of the structural aggregates and reduced presence of water. The production capacity of these soils is not great.

Hydromorphic soils

Alluvial soils are contemporary (recent) river or lake sediment layers, and they can have a horizon (A) or (Ar), and even G. Unlike the diluvial soils they are characterized by good assortment. The suspended materials from which these soils are formed have heterogeneous mineralogical-petrographic composition. According to mechanical properties they are light soils. The macrostructure is poorly expressed, and therefore the physical properties depend on the mechanical composition. They have good water, air and heat regime. They are a very fertile type of soil and they are used for intensive agricultural production. They are represented as an independent soil type along the rivers Vardar, Crna Reka and Luda Mara.

METHODOLOGY OF WORK

The sample of wine (15.0 mL) is placed in a quartz furnace and ethanol is slowly added until the sample reaches a volume of 8 ml, then quantitatively it is placed in 25 ml calibrated volumetric bottle and made up to the mark with concentrated HCl.

Instrumentation

The elements are analyzed through the application of atomic spectrometric method with dual plasma (AES-ICP) and the method of electro thermal spectrometric atomic absorption (ETAAS). With the method of AES-ICP the following elements were also measured: Al, As, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, V and Zn. The concentrations of As, Cd, Co, Cr, Ni and Pb in wine samples were below the detection limits of AES-ICP and therefore were analyzed by ETAAS. Instruments such as: Varian 715-ES Series ICP Optical Emission Spectrometer (Varian, USA) and Zeeman ETAAS Varian SpectrAA-640Z were used for the analysis.
The obtained results and comment

The results of the geo-chemical determination of concentrations of macro elements and trace elements in wines that are produced at home in the Tikveš area by applying the methods of ICP-AES and ETASS are shown in Table 1.

The spatial position of samples taken from the wines produced at home and the correlation between the presence of definite geo-chemical pairs of elements in wines/soils is shown in the images (Figs. 3–8), and statistical parameters are shown in Tables 2 and 3.

<table>
<thead>
<tr>
<th>Samp No.</th>
<th>Sort of vine</th>
<th>Region – attar</th>
<th>Al</th>
<th>Ba</th>
<th>Ca</th>
<th>Cu</th>
<th>K</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Samples of soils</td>
<td>mg/l</td>
<td></td>
<td>mg/l</td>
<td></td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>longitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-1</td>
<td>Kratošija</td>
<td>Debrište-Ramnište</td>
<td>0.11</td>
<td>0.17</td>
<td>62.23</td>
<td>0.046</td>
<td>851.7</td>
<td>102.87</td>
</tr>
<tr>
<td>I-2</td>
<td>Smederevka</td>
<td>Debrište-Ramnište</td>
<td>0.22</td>
<td>0.11</td>
<td>39.77</td>
<td>0.318</td>
<td>582.6</td>
<td>88.86</td>
</tr>
<tr>
<td>I-3</td>
<td>Smederevka</td>
<td>Ljubaš</td>
<td>0.25</td>
<td>0.68</td>
<td>55.73</td>
<td>0.051</td>
<td>742.0</td>
<td>87.87</td>
</tr>
<tr>
<td>I-4</td>
<td>Kavadarka</td>
<td>Ljubaš</td>
<td>0.39</td>
<td>0.21</td>
<td>125.15</td>
<td>0.049</td>
<td>895.0</td>
<td>106.71</td>
</tr>
<tr>
<td>I-5</td>
<td>Burgundec</td>
<td>Glišicki atar</td>
<td>0.10</td>
<td>0.06</td>
<td>19.77</td>
<td>0.036</td>
<td>431.0</td>
<td>23.92</td>
</tr>
<tr>
<td>I-6</td>
<td>Smederevka</td>
<td>Poroj (nad otpad)</td>
<td>0.17</td>
<td>0.08</td>
<td>34.11</td>
<td>0.093</td>
<td>636.8</td>
<td>96.18</td>
</tr>
<tr>
<td>I-7</td>
<td>Smederevka</td>
<td>Dreno</td>
<td>0.96</td>
<td>0.15</td>
<td>99.74</td>
<td>0.036</td>
<td>868.0</td>
<td>70.15</td>
</tr>
<tr>
<td>I-8</td>
<td>Kratošija</td>
<td>Dreno</td>
<td>0.27</td>
<td>0.10</td>
<td>51.57</td>
<td>0.127</td>
<td>897.2</td>
<td>96.18</td>
</tr>
<tr>
<td>I-9</td>
<td>Burgundec</td>
<td>Sirkovo</td>
<td>0.55</td>
<td>0.07</td>
<td>22.25</td>
<td>0.020</td>
<td>323.5</td>
<td>26.24</td>
</tr>
<tr>
<td>I-10</td>
<td>Rizling</td>
<td>Ribarci</td>
<td>2.43</td>
<td>0.10</td>
<td>105.16</td>
<td>0.277</td>
<td>698.5</td>
<td>95.27</td>
</tr>
<tr>
<td>I-11</td>
<td>Kratošija</td>
<td>Goligaz</td>
<td>0.29</td>
<td>0.22</td>
<td>49.02</td>
<td>1.081</td>
<td>442.1</td>
<td>116.22</td>
</tr>
<tr>
<td>I-12</td>
<td>Vranec</td>
<td>Ovcka Reka</td>
<td>0.89</td>
<td>0.19</td>
<td>82.09</td>
<td>0.051</td>
<td>983.4</td>
<td>88.19</td>
</tr>
<tr>
<td>I-13</td>
<td>Smederevka</td>
<td>Kurii-Lazaraica</td>
<td>0.87</td>
<td>0.24</td>
<td>81.64</td>
<td>0.058</td>
<td>829.3</td>
<td>87.08</td>
</tr>
<tr>
<td>I-14</td>
<td>Kaberne</td>
<td>Sopotsko</td>
<td>0.78</td>
<td>0.34</td>
<td>78.40</td>
<td>0.065</td>
<td>1109.4</td>
<td>90.66</td>
</tr>
<tr>
<td>I-15</td>
<td>Smederevka</td>
<td>Krivi Dol Resava</td>
<td>1.08</td>
<td>0.22</td>
<td>32.12</td>
<td>0.127</td>
<td>874.8</td>
<td>81.15</td>
</tr>
<tr>
<td>I-16</td>
<td>Kratošija</td>
<td>Kalnica</td>
<td>0.81</td>
<td>0.47</td>
<td>35.66</td>
<td>0.077</td>
<td>819.8</td>
<td>113.34</td>
</tr>
<tr>
<td>I-17</td>
<td>Smederevka</td>
<td>Koriža-Resava</td>
<td>0.26</td>
<td>0.12</td>
<td>43.40</td>
<td>0.009</td>
<td>1002.6</td>
<td>72.63</td>
</tr>
<tr>
<td>I-18</td>
<td>Kaberne</td>
<td>Sopot</td>
<td>0.44</td>
<td>0.34</td>
<td>85.01</td>
<td>0.034</td>
<td>1115.0</td>
<td>130.52</td>
</tr>
<tr>
<td>I-19</td>
<td>Belan</td>
<td>Kopacet</td>
<td>0.43</td>
<td>0.16</td>
<td>25.49</td>
<td>0.881</td>
<td>415.3</td>
<td>89.50</td>
</tr>
<tr>
<td>I-20</td>
<td>Kratošija</td>
<td>Kurii</td>
<td>1.38</td>
<td>0.20</td>
<td>36.99</td>
<td>0.043</td>
<td>1374.3</td>
<td>79.59</td>
</tr>
<tr>
<td>I-21</td>
<td>Šardone</td>
<td>Kurii</td>
<td>0.96</td>
<td>0.11</td>
<td>26.02</td>
<td>0.030</td>
<td>1253.2</td>
<td>93.60</td>
</tr>
<tr>
<td>I-22</td>
<td>Smederevka</td>
<td>Gradevica</td>
<td>0.29</td>
<td>0.14</td>
<td>57.67</td>
<td>0.029</td>
<td>606.0</td>
<td>74.54</td>
</tr>
<tr>
<td>I-23</td>
<td>Smederevka</td>
<td>Dabnište</td>
<td>0.27</td>
<td>0.22</td>
<td>37.81</td>
<td>0.085</td>
<td>813.2</td>
<td>78.53</td>
</tr>
<tr>
<td>I-24</td>
<td>Vranec</td>
<td>Begnište</td>
<td>0.65</td>
<td>0.09</td>
<td>60.66</td>
<td>0.023</td>
<td>956.1</td>
<td>86.18</td>
</tr>
<tr>
<td>I-25</td>
<td>Merlo</td>
<td>Krnjevo (Ploštovo)</td>
<td>0.27</td>
<td>0.25</td>
<td>57.87</td>
<td>1.389</td>
<td>805.5</td>
<td>83.90</td>
</tr>
<tr>
<td>I-26</td>
<td>Stanešina</td>
<td>Dabnište</td>
<td>0.34</td>
<td>0.27</td>
<td>44.87</td>
<td>0.115</td>
<td>284.7</td>
<td>100.37</td>
</tr>
<tr>
<td>I-27</td>
<td>Kratošija</td>
<td>Kruška</td>
<td>0.65</td>
<td>0.47</td>
<td>47.29</td>
<td>0.031</td>
<td>1174.3</td>
<td>122.32</td>
</tr>
<tr>
<td>I-28</td>
<td>Vranec</td>
<td>Moravče</td>
<td>0.16</td>
<td>0.38</td>
<td>49.47</td>
<td>0.090</td>
<td>1182.5</td>
<td>66.86</td>
</tr>
<tr>
<td>I-29</td>
<td>Smederevka+Kratošija</td>
<td>Rosoman (Konjarovec)</td>
<td>0.63</td>
<td>0.18</td>
<td>39.16</td>
<td>0.135</td>
<td>666.9</td>
<td>90.13</td>
</tr>
<tr>
<td>I-30</td>
<td>Kratošija</td>
<td>Dolni Disan</td>
<td>0.24</td>
<td>0.18</td>
<td>29.79</td>
<td>0.050</td>
<td>778.6</td>
<td>101.88</td>
</tr>
<tr>
<td>I-31</td>
<td>Rekačetli</td>
<td>Krnjevo (Ploštovo)</td>
<td>0.19</td>
<td>0.17</td>
<td>35.37</td>
<td>0.184</td>
<td>397.2</td>
<td>87.53</td>
</tr>
<tr>
<td>I-32</td>
<td>Kaberne</td>
<td>Krnjevo (Putale)</td>
<td>0.43</td>
<td>0.43</td>
<td>42.10</td>
<td>0.134</td>
<td>1626.4</td>
<td>88.97</td>
</tr>
<tr>
<td>I-33</td>
<td>Kratošija</td>
<td>Ljubaš</td>
<td>0.35</td>
<td>0.38</td>
<td>48.81</td>
<td>0.079</td>
<td>867.9</td>
<td>113.37</td>
</tr>
<tr>
<td>I-34</td>
<td>Smederevka</td>
<td>Belgrad</td>
<td>1.09</td>
<td>0.10</td>
<td>43.94</td>
<td>0.874</td>
<td>544.7</td>
<td>82.06</td>
</tr>
<tr>
<td>I-35</td>
<td>Belan</td>
<td>Sivec</td>
<td>1.55</td>
<td>0.25</td>
<td>37.59</td>
<td>0.873</td>
<td>571.2</td>
<td>73.03</td>
</tr>
<tr>
<td>I-36</td>
<td>Vranec</td>
<td>Palikura</td>
<td>1.05</td>
<td>0.16</td>
<td>62.65</td>
<td>0.045</td>
<td>1470.1</td>
<td>88.39</td>
</tr>
<tr>
<td>I-37</td>
<td>Smederevka+Temjanuga</td>
<td>Goligaz</td>
<td>0.27</td>
<td>0.10</td>
<td>25.92</td>
<td>0.490</td>
<td>454.5</td>
<td>82.53</td>
</tr>
<tr>
<td>I-38</td>
<td>Kratošija</td>
<td>Bel Kamen</td>
<td>1.27</td>
<td>0.38</td>
<td>32.85</td>
<td>0.319</td>
<td>883.5</td>
<td>114.85</td>
</tr>
</tbody>
</table>

Geologica Macedonica, 24 (2), 75–86 (2010)
Table 1. Continue

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sort of vine</th>
<th>Region – attar</th>
<th>Samples of soils latitude / longitude</th>
<th>Co (μg/l)</th>
<th>Cr (μg/l)</th>
<th>Ni (μg/l)</th>
<th>Pb (μg/l)</th>
<th>Zn (μg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>Kratošija</td>
<td>Debrište-Ramnište 41.459362° / 21.895683°</td>
<td>1.81</td>
<td>7.18</td>
<td>92.58</td>
<td>81.17</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>I-2</td>
<td>Smederevka</td>
<td>Debrište-Ramnište 41.459362° / 21.895683°</td>
<td>7.24</td>
<td>8.65</td>
<td>313.83</td>
<td><5</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>I-3</td>
<td>Smederevka</td>
<td>Ljubaš</td>
<td>2.12</td>
<td>3.09</td>
<td>41.62</td>
<td>80.28</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>I-4</td>
<td>Kavadarka</td>
<td>Ljubaš</td>
<td>3.72</td>
<td>7.48</td>
<td>62.71</td>
<td>25.22</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>I-5</td>
<td>Burgundec</td>
<td>Gliščicki atar 41.460129° / 22.014170°</td>
<td>0.48</td>
<td>1.37</td>
<td>22.18</td>
<td>15.56</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>I-6</td>
<td>Smederevka</td>
<td>Poroj (nad otpad) 41.453508° / 21.997288°</td>
<td>0.84</td>
<td>6.48</td>
<td>60.46</td>
<td>28.09</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>I-7</td>
<td>Smederevka</td>
<td>Drenovo 41.432973° / 21.881231°</td>
<td>2.24</td>
<td>19.70</td>
<td>119.95</td>
<td>53.18</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>I-8</td>
<td>Kratošija</td>
<td>Drenovo 41.432892° / 21.889044°</td>
<td>5.58</td>
<td>13.52</td>
<td>108.52</td>
<td>21.55</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>I-9</td>
<td>Burgundec</td>
<td>Sirkovo 41.445288° / 21.907220°</td>
<td>0.96</td>
<td><1</td>
<td>23.02</td>
<td>16.42</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>I-10</td>
<td>Rizling</td>
<td>Ribarci 41.507803° / 21.976810°</td>
<td>10.57</td>
<td>15.06</td>
<td>26.68</td>
<td>36.92</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>I-11</td>
<td>Kratošija</td>
<td>Goligaz 41.445470° / 21.986805°</td>
<td>3.86</td>
<td>8.90</td>
<td>58.19</td>
<td>103.57</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>I-12</td>
<td>Vranec</td>
<td>Ovčka Reka 41.436889° / 22.054705°</td>
<td>3.50</td>
<td>9.81</td>
<td>9.35</td>
<td>18.33</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>I-13</td>
<td>Smederevka</td>
<td>Kurii-Lazarica 41.521023° / 22.023823°</td>
<td>3.38</td>
<td>4.68</td>
<td>11.99</td>
<td>12.61</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>I-14</td>
<td>Kaberne</td>
<td>Sopotko 41.483175° / 22.043180°</td>
<td>1.39</td>
<td>4.46</td>
<td>17.98</td>
<td>59.09</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>I-15</td>
<td>Smederevka</td>
<td>Krivi Dol Resava 41.403049° / 21.977884°</td>
<td>6.63</td>
<td>21.79</td>
<td>75.89</td>
<td>28.02</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>I-16</td>
<td>Kratošija</td>
<td>Kalnica 41.421496° / 22.021953°</td>
<td>0.58</td>
<td>11.85</td>
<td>23.56</td>
<td>47.42</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>I-17</td>
<td>Smederevka</td>
<td>Koriška-Rasava 41.409952° / 21.977952°</td>
<td>0.38</td>
<td>4.84</td>
<td>16.44</td>
<td><5</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>I-18</td>
<td>Kaberne</td>
<td>Sopot 41.508380° / 22.006101°</td>
<td>2.79</td>
<td>4.00</td>
<td>6.71</td>
<td><5</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>I-19</td>
<td>Belan</td>
<td>Kopacot 41.418623° / 22.005305°</td>
<td>1.70</td>
<td>3.21</td>
<td>12.39</td>
<td>22.29</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>I-20</td>
<td>Kratošija</td>
<td>Kurii 41.527615° / 22.005905°</td>
<td>4.84</td>
<td>13.23</td>
<td>10.96</td>
<td>6.38</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>I-21</td>
<td>Šardone</td>
<td>Kurii 41.527615° / 22.005905°</td>
<td>3.10</td>
<td>12.64</td>
<td><5</td>
<td><5</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>I-22</td>
<td>Smederevka</td>
<td>Gradiževica 41.393553° / 21.986142°</td>
<td><0.1</td>
<td>22.06</td>
<td>37.19</td>
<td>37.15</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>I-23</td>
<td>Smederevka</td>
<td>Dabnište 41.384672° / 22.006563°</td>
<td>0.39</td>
<td>5.30</td>
<td>19.17</td>
<td>24.45</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>I-24</td>
<td>Vranec</td>
<td>Begnište 41.58727° / 21.994724°</td>
<td>2.80</td>
<td>6.61</td>
<td>13.09</td>
<td>40.94</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>I-25</td>
<td>Merlo</td>
<td>Kmjevo (Ploščito) 41.310944° / 22.125286°</td>
<td>0.18</td>
<td>5.41</td>
<td>15.52</td>
<td>66.80</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>I-26</td>
<td>Stanešina</td>
<td>Dabnište 41.384672° / 22.006563°</td>
<td>0.74</td>
<td>12.50</td>
<td>13.10</td>
<td>6.02</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>I-27</td>
<td>Kratošija</td>
<td>Kruška 41.465574° / 22.044982°</td>
<td>3.33</td>
<td>19.82</td>
<td>31.73</td>
<td>218.34</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>I-28</td>
<td>Vranec</td>
<td>Moklište 41.387880° / 22.046183°</td>
<td><0.1</td>
<td>2.45</td>
<td>33.73</td>
<td><5</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>I-29</td>
<td>Smederevka+Kratošija</td>
<td>Rosoman (Konjarovec)</td>
<td>41.520796° / 21.931591°</td>
<td>1.85</td>
<td>10.44</td>
<td>21.21</td>
<td>72.69</td>
<td>0.26</td>
</tr>
<tr>
<td>I-30</td>
<td>Kratošija</td>
<td>Dolni Disan 41.448101° / 22.090495°</td>
<td>0.43</td>
<td>2.71</td>
<td><5</td>
<td><5</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>I-31</td>
<td>Rekaciteli</td>
<td>Kmjevo (Ploščito) 41.313702° / 22.125842°</td>
<td><0.1</td>
<td>1.87</td>
<td><5</td>
<td>218.99</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>I-32</td>
<td>Kaberne</td>
<td>Kmjevo (Polet) 41.310946° / 22.131133°</td>
<td>2.02</td>
<td>99.53</td>
<td>56.05</td>
<td>26.89</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>I-33</td>
<td>Kratošija</td>
<td>Ljubaš 41.443418° / 21.987745°</td>
<td>1.35</td>
<td>13.16</td>
<td>44.07</td>
<td>54.60</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>I-34</td>
<td>Smederevka</td>
<td>Belgrad 41.424559° / 22.041539°</td>
<td>3.40</td>
<td>8.16</td>
<td>27.29</td>
<td>289.79</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>I-35</td>
<td>Belan</td>
<td>Sivec</td>
<td>6.73</td>
<td>30.09</td>
<td>93.29</td>
<td>156.75</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>I-36</td>
<td>Vranec</td>
<td>Palikura 41.527579° / 21.975896°</td>
<td>0.78</td>
<td>12.49</td>
<td>31.84</td>
<td>25.44</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>I-37</td>
<td>Smederevka+Ternjanuga</td>
<td>Goligaz</td>
<td><0.1</td>
<td>4.04</td>
<td><5</td>
<td>90.70</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>I-38</td>
<td>Kratošija</td>
<td>Bel Kamen 41.430558° / 21.997249°</td>
<td>1.50</td>
<td>18.46</td>
<td>37.26</td>
<td>49.56</td>
<td>0.18</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3. Spatial position of samples taken from soils and wines and their geo-chemical correlation ($\text{Al}_{\text{soil}}/\text{Al}_{\text{vine}}$)

Fig. 4. Spatial position of samples taken from soils and wines and their geo-chemical correlation ($\text{As}_{\text{soil}}/\text{As}_{\text{vine}}$)

Fig. 5. Spatial position of samples taken from soils and wines and their geo-chemical correlation ($\text{Cd}_{\text{soil}}/\text{Cd}_{\text{vine}}$)

Fig. 6. Spatial position of samples taken from soils and wines and their geo-chemical correlation ($\text{Cr}_{\text{soil}}/\text{Cr}_{\text{vine}}$)

Fig. 7. Spatial position of samples taken from soils and wines and their geo-chemical correlation ($\text{Ni}_{\text{soil}}/\text{Ni}_{\text{vine}}$)

Fig. 8. Spatial position of samples taken from soils and wines and their geo-chemical correlation ($\text{Pb}_{\text{soil}}/\text{Pb}_{\text{vine}}$)
Table 2

The statistical parameters of the vine geochemistry

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Xg</th>
<th>Md</th>
<th>min</th>
<th>P10</th>
<th>P25</th>
<th>P75</th>
<th>P90</th>
<th>max</th>
<th>s</th>
<th>A</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.7700</td>
<td>0.5100</td>
<td>0.5500</td>
<td>0.1000</td>
<td>0.1700</td>
<td>0.2700</td>
<td>0.9600</td>
<td>1.2000</td>
<td>4.9000</td>
<td>0.9100</td>
<td>3.5200</td>
<td>14.9200</td>
</tr>
<tr>
<td>As</td>
<td>34.0000</td>
<td>9.9000</td>
<td>28.0000</td>
<td>0.5000</td>
<td>0.5000</td>
<td>0.5000</td>
<td>53.0000</td>
<td>87.0000</td>
<td>130.0000</td>
<td>36.0000</td>
<td>1.0300</td>
<td>0.3800</td>
</tr>
<tr>
<td>Ba</td>
<td>0.2200</td>
<td>0.1900</td>
<td>0.1800</td>
<td>0.0580</td>
<td>0.0920</td>
<td>0.1200</td>
<td>0.3400</td>
<td>0.3800</td>
<td>0.4700</td>
<td>0.1200</td>
<td>0.7800</td>
<td>–0.5500</td>
</tr>
<tr>
<td>Ca</td>
<td>51.0000</td>
<td>47.0000</td>
<td>47.0000</td>
<td>20.0000</td>
<td>30.0000</td>
<td>34.0000</td>
<td>61.0000</td>
<td>82.0000</td>
<td>110.0000</td>
<td>22.0000</td>
<td>0.9500</td>
<td>0.2800</td>
</tr>
<tr>
<td>Cd</td>
<td>0.8700</td>
<td>0.3800</td>
<td>0.4600</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.1200</td>
<td>0.9200</td>
<td>1.5000</td>
<td>5.3000</td>
<td>1.2000</td>
<td>2.5200</td>
<td>6.3700</td>
</tr>
<tr>
<td>Co</td>
<td>2.3000</td>
<td>1.2000</td>
<td>1.7000</td>
<td>0.0500</td>
<td>0.1800</td>
<td>0.5700</td>
<td>3.4000</td>
<td>4.5000</td>
<td>11.0000</td>
<td>2.3000</td>
<td>1.8000</td>
<td>4.4100</td>
</tr>
<tr>
<td>Cr</td>
<td>12.0000</td>
<td>7.6000</td>
<td>8.9000</td>
<td>0.5000</td>
<td>2.4000</td>
<td>4.5000</td>
<td>14.0000</td>
<td>20.0000</td>
<td>100.0000</td>
<td>17.0000</td>
<td>4.4800</td>
<td>22.7400</td>
</tr>
<tr>
<td>Cu</td>
<td>0.2200</td>
<td>0.0930</td>
<td>0.0790</td>
<td>0.0087</td>
<td>0.0290</td>
<td>0.0360</td>
<td>0.1800</td>
<td>0.8700</td>
<td>1.4000</td>
<td>0.3500</td>
<td>0.3500</td>
<td>4.8700</td>
</tr>
<tr>
<td>K</td>
<td>840.0000</td>
<td>790.0000</td>
<td>820.0000</td>
<td>320.0000</td>
<td>430.0000</td>
<td>637.0000</td>
<td>1000.0000</td>
<td>1200.0000</td>
<td>1600.0000</td>
<td>310.0000</td>
<td>0.5300</td>
<td>0.2600</td>
</tr>
<tr>
<td>Mg</td>
<td>87.0000</td>
<td>83.0000</td>
<td>88.0000</td>
<td>24.0000</td>
<td>67.0000</td>
<td>81.0000</td>
<td>96.0000</td>
<td>120.0000</td>
<td>130.0000</td>
<td>23.0000</td>
<td>–0.9200</td>
<td>1.9900</td>
</tr>
<tr>
<td>Mn</td>
<td>1.4000</td>
<td>1.3000</td>
<td>1.2000</td>
<td>0.4800</td>
<td>0.7400</td>
<td>1.1000</td>
<td>1.9000</td>
<td>1.5000</td>
<td>3.0000</td>
<td>0.5400</td>
<td>1.1300</td>
<td>2.0300</td>
</tr>
<tr>
<td>Na</td>
<td>9.5000</td>
<td>5.5000</td>
<td>3.6000</td>
<td>1.0000</td>
<td>2.0000</td>
<td>2.5000</td>
<td>11.0000</td>
<td>20.0000</td>
<td>64.0000</td>
<td>13.0000</td>
<td>3.0700</td>
<td>11.4600</td>
</tr>
<tr>
<td>Ni</td>
<td>38.0000</td>
<td>24.0000</td>
<td>24.0000</td>
<td>2.5000</td>
<td>6.7000</td>
<td>13.0000</td>
<td>44.0000</td>
<td>76.0000</td>
<td>200.0000</td>
<td>42.0000</td>
<td>2.5800</td>
<td>7.8600</td>
</tr>
<tr>
<td>Pb</td>
<td>53.0000</td>
<td>27.0000</td>
<td>28.0000</td>
<td>2.5000</td>
<td>2.5000</td>
<td>16.0000</td>
<td>55.0000</td>
<td>100.0000</td>
<td>290.0000</td>
<td>68.0000</td>
<td>2.4300</td>
<td>5.6200</td>
</tr>
<tr>
<td>Sr</td>
<td>1.1000</td>
<td>0.8200</td>
<td>0.9500</td>
<td>0.1500</td>
<td>0.3500</td>
<td>0.4400</td>
<td>1.4000</td>
<td>2.4000</td>
<td>2.9000</td>
<td>0.7400</td>
<td>0.9700</td>
<td>0.0900</td>
</tr>
<tr>
<td>Zn</td>
<td>0.3000</td>
<td>0.1900</td>
<td>0.2300</td>
<td>0.0360</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.5700</td>
<td>0.7000</td>
<td>0.9000</td>
<td>0.2600</td>
<td>0.9300</td>
<td>–0.4400</td>
</tr>
</tbody>
</table>

Table 3

The statistical parameters of the vine geochemistry

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>0.28</td>
<td>–0.10</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>0.18</td>
<td>0.11</td>
<td>0.04</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0.28</td>
<td></td>
<td>–0.17</td>
<td>0.42</td>
<td>0.59</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0.33</td>
<td></td>
<td>–0.07</td>
<td>0.44</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.38</td>
<td></td>
<td>–0.08</td>
<td>0.09</td>
<td>–0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.50</td>
<td></td>
<td>–0.12</td>
<td>0.50</td>
<td>0.28</td>
<td>–0.01</td>
<td>0.01</td>
<td>0.51</td>
<td>–0.34</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.01</td>
<td></td>
<td>–0.10</td>
<td>0.11</td>
<td>0.04</td>
<td>–0.03</td>
<td>0.35</td>
<td>–0.24</td>
<td>0.20</td>
<td>0.07</td>
<td>0.16</td>
<td>–0.04</td>
</tr>
<tr>
<td>K</td>
<td>0.21</td>
<td></td>
<td>–0.03</td>
<td>0.12</td>
<td>0.55</td>
<td>0.43</td>
<td>0.64</td>
<td>0.10</td>
<td>0.15</td>
<td>0.11</td>
<td>0.52</td>
<td>1.00</td>
</tr>
<tr>
<td>Mg</td>
<td>0.03</td>
<td></td>
<td>–0.11</td>
<td>0.10</td>
<td>0.01</td>
<td>0.31</td>
<td>0.20</td>
<td>–0.03</td>
<td>–0.03</td>
<td>0.01</td>
<td>0.24</td>
<td>–0.30</td>
</tr>
<tr>
<td>Mn</td>
<td>0.03</td>
<td></td>
<td>–0.07</td>
<td>0.19</td>
<td>0.04</td>
<td>–0.03</td>
<td>0.35</td>
<td>–0.24</td>
<td>0.20</td>
<td>0.07</td>
<td>0.16</td>
<td>–0.04</td>
</tr>
<tr>
<td>Na</td>
<td>0.07</td>
<td></td>
<td>–0.11</td>
<td>0.51</td>
<td>0.28</td>
<td>–0.09</td>
<td>0.19</td>
<td>0.01</td>
<td>–0.05</td>
<td>0.39</td>
<td>0.72</td>
<td>0.44</td>
</tr>
<tr>
<td>Ni</td>
<td>–0.14</td>
<td></td>
<td>0.02</td>
<td>0.03</td>
<td>0.17</td>
<td>0.33</td>
<td>0.37</td>
<td>–0.10</td>
<td>0.24</td>
<td>–0.16</td>
<td>0.26</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Geologica Macedonica, 24 (1), 75–86 (2010)
From the presented results concerning the correlation between the presence of the macro elements and trace elements in soils and wines that are produced at home in Tikveš we can conclude that there is no marked correlation in certain element pairs. The lack of significant correlation between analyzed soils analysis and analyzed wines should be explained by the small number of samples that are the subject of the research, as well as through the very processes of concentration of the micro-elements in wines.

On the other side, another interesting part are the correlations which refer to the concentration of respective trace elements in the wines produced at homes, and the wines produced at the wineries in the Republic of Macedonia.

The pictures 9 and 13 show the concentrations of As (Fig. 9) and the concentrations of Pb (Fig. 13) from where it can be noted that there are higher concentrations of these two elements in the wines produced at home in relation to the wines produced at the wineries (Tašev et al. 2005, Karadzova et al. 2007) with an exception of the wine vranec and the content of Pb which is nearly identical to both wine types.

Fig. 9–13. Correlations of trace elements concentration in the wines produced at homes, and the wines produced at the wineries in the Republic of Macedonia

Geologica Macedonica, 24 (2), 75–86 (2010)
Figure 11, 12, 13 shows the relation of the contents of Cd, Ni, Cr in the white and red wine produced in home conditions and in the conditions at the Tikveš winery. From this picture it can be concluded that we have bigger concentrations of Cd and Ni in the white and red wine produced in home conditions in relation to the wines produced in the winery. It should be noted that this trend of bigger concentrations of the elements in the wines produced in home conditions does not follow the concentration of Cr.

CONCLUSION

The studies made about the presence of trace elements in wines produced at home in Tikveš suggest the following conclusions:

– The presence of trace elements such as As, Pb, Cd, Ni is higher in wines produced in home conditions in relation to the presence of these trace elements in wines produced in industrial conditions.

– There are no correlations between the presence of trace elements in wines produced at home and the elements that are present in soils.

The non-existence of correlations between element pairs (N_{soil}/N_{wine}) is the result of: the small depth at which samples are taken from the soil (30 cm); the presence of trace elements in soil is mainly in the silicate structure from which it is very difficult to perform the excretion the elements: the root systems of grape vine are very deep.

REFERENCES

Cvetković J., Arpadjan S., Karadžova I., Stafilov T., 2002c: Determination of chromium in macedonian wine by electrothermal atomic absorption spectrometry, Journal of Institute of Science and Technology of Balikesir University, 4, 80–84.

Tašev K., Karadjova I., Arpadjan S., Cvetković J., Stafilov T., 2006: Liquid/liquid extraction and column solid phase extraction procedures for iron species determination in wines, Food Control, 17, 484–488.
Резиме

МИКРОЕЛЕМЕНТИ ВО ВИНАТА ПРОИЗВДЕНИ ВО ДОМАШНИ УСЛОВИ ВО ТИКВЕШКО

Иван Боев¹, Соња Лепиткова², Тена Шијакова-Иванова²

¹Универзитет „Гоце Делчев“, Штип, Република Македонија
²Факултет за природни и технички науки, Универзитет „Гоце Делчев“, Гоце Делчев 89, МК-2000, Штип, Република Македонија
boev@ugd.edu.mk

Кез Јорде: вино; геохемија; микроелементи; корелации

Во овој труд се прикажани резултатите од геохимиските истражувања на присуство микроелементи (Al, As, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, V и Zn) во вината произведени во домашни условия во Тиквешко со примената на методите на ICP-AES и (ETAAS). Во трудов се прикажани и корелациите направени врз основа на присуство на некои микроелементи во почвата на која се одгледува одредената сорта на гроздје и истите елементи во виното кои се произведуваат од таков вид на гроздје. Корелациите во главно укажуваат на фактот дека не постои голема поврзаност помеѓу присуството на одредени микроелементи во почвата и виното произведено во домашни услови. Имено, овие корелации за испитувањето на определена геохимиска парови се следните: Alпочва / Alвино (0.04); Asпочва / Asвино (0.11); Baпочва / Baвино (0.23); Caпочва / Caвино (0.02); Cdпочва / Cdвино (–0.06); Coпочва / Coвино (–0.26); Crпочва / Crвино (–0.04); Cuпочва / Cuвино (0.04); Mgпочва / Mgвино (–0.30); Mnпочва / Mnвино (–0.40); Naпочва / Naвино (0.11); Niпочва / Niвино (0.03); Pbпочва / Pbвино (0.27); што укажува дека присуството на значајни корелации помеку на геохимиски парови е резултат на неколку моменти како што се: (1) присуството на микроелементи во почната на длабочина до 30 cm. (2) микроелементите во почвата се присутни претежно во силикатна матрица од која елементи не можат лесно да се издвојуваат во водни раствори. (3) на кореновот систем на винова лоза кој е во многу поголема длабочина од 30 cm.
ARTESIAN MINERAL WATER OF THE RAOTINCE SITE, TETOVO

Vojo Mirčovski, Goše Petrov, Vlado Mirčovski

Faculty of Natural and Technical Sciences, "Goce Delčev" University,
Goce Delčev 89, MK-2000, Štip, Republic of Macedonia
vojo.mircovski@ugd.edu.mk

Abstract: A number of mineral springs occur on the west and east peripheral part of the Polog valley. Their appearance is connected with the Western Polog fault that stretches west to the brim of the valley NE–SW direction and east direction of Polog fault stretches in NW–SE. This paper presents the results of detailed hydrogeological investigations of mineral water at the site Raotince Tetovo. Based on data obtained on two operational investigative boreholes at the site in Raotince of the pleistocene limnic sediments at a depth of 38–67 m is founded artesian aquifer with low mineralized water.

Key words: artesian aquifer; mineral water; Raotince; Polog valley; limnic sediments

INTRODUCTION

Raotince site is situated in the western part of Macedonia, 20 km north-east of Tetovo (Fig. 1). The occurrences of mineral and low mineral waters in this area appears in the left and the right banks of the river Vardar from the village Kopance to the village Raotince. In the immediate vicinity of the site Raotince passes the river Vardar. Mineral waters from the wider environment Raotince were investigated by several authors: (Bajic, 1929, Kekic, 1973, 1986, Kotevski, 1980, 1987, Loncar 1996).

Fig. 1. Geographical position of the investigated area
GEOLOGICAL COMPOSITION OF THE WIDER REGION

The geology of the region is made up of Paleozoic, Permotriasic, Mezozoic, Tertiary and Quaternary rocks (Petkovski, Karovic, 1977) (Fig. 2).

Fig. 2. Geological map of the investigated area. (Petkovski nad Karovic 1977)

The oldest rocks are represented of Paleozoic rocks present of: epidote – chlorite – sericite – quartz schist and metadijабases (Scoep), marbles and kalkshists (M), granite rocks (γ), albitized – chlorite – epidiot – quartz schist, and gabbros (γ). Permotriasic rocks are represented by: filites, metamorphosed clestones, sandsstones and schists (P, T) and quartz porphyry (π q).

Mezozoic is present of Trijasic massive marble (T 2.3), jurasic harzburgites (σpy) and serpentinites (Se).

Tertiary is made up of only Pliocene sediments.

Quartaly rocks are represented of: moraine material (gl), limnic terace sediments (tj), lower river terraces (t1), proluvijal (pr), deluvijal (d) and alluvial sediments (al).

The investigated area by geotectonic regional aspect belongs to the Western Macedonian zone (Arsovski, 1997).
HYDROGEOLOGICAL INVESTIGATIONS

Two exploration drill holes with a depth of $D_1 = 50$ m and $D_3 = 70$ m. were made for the determination of the mineral water at the Raotince site.

With both boreholes artesian water were discovered bearing horizons with low mineral water. Based on data obtained by investigations drilling, was designed hydrogeological profile clearly presented lithological members (Fig. 3). From the hydrogeological profile it can be seen that the topmost parts of the site-built of alluvial terace sediments which thickness ranges up to 10 meters. In the terace alluvial sediments that are built of gravel and sand aquifer is formed by free level. Under the alluvial terace sediments down to the final depth are determined limnic sediments, presents of gravels, sands and clays and a varieties of their mutual transition. After drilling and purification drill holles have been done galvanized perforated pipes with a diameter 3” have been filled. By measuring the yield of the drill holles artesian mineral water with capacity of: $D1-Q= 8$ l/s $D3 – Q = 2.6$ l/s is obtained.

On the bases of D1 drill hole there is greater yield in it so technical exploration is prepared for exploration as well (Fig. 4). The drill hole is located about 400 meters downstream of the bridge of river Vardar Raotince village.

Based on field observations on known data as a potential zone in which there is mineralisation water zone it is located on both sides of the river Vardar in NW–SE direction. The width of this zone ranges of 250–500 meters in length and can be traced right to the village Kopance.
CALCULATION OF THE HYDROGEOLOGICAL PARAMETERS

According to the data of the investigation work done a calculation has been made of the hydrogeological parameters of the water bearing environment:

- K – coefficient of filtration
- T – trasmissivity coefficient
- Q – yield of drill hole
- N – hydrostatic pressure of aquifer
- l – thickness of water–bearing leyer

Filtration coefficient

Filtration coefficient is determined based on determination of granulometric composition of samples from the artesian water-baring layer which in the drill hole D1 is in the interval from 38.00 to 49.00 meters and the results obtained by the tests carried out on the well.

The results obtained from the granulometric analyses were used for calculation according to the formula of "USBR".

$$ K_f = 0.36 \cdot d_{20}^{2.3} $$

Where is: K – coefficient of filtration, d_{20} – diameter of grains (mm), with representation from 20% to granulometric curve.

According to this formula the filtration coefficient was obtained by the following value:

$$ K_f = 1.60 \times 10^{-1} \text{ sm/s, sm/s or } 138 \text{ m/ dehydration} $$

Static water level is located at $+4.5 \text{ m}$ above the surface of the ground. The testing of the well obtained the following values of the capacity of the well Q and lowering the water level S in the well Table 1.

<table>
<thead>
<tr>
<th>Height of LGW over field H</th>
<th>Capacity Q</th>
<th>Lower level $H_e - H$ = S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_1 = 3.20$</td>
<td>$Q_1 = 2.40$</td>
<td>$S_1 = 1.30$</td>
</tr>
<tr>
<td>$H_2 = 1.80$</td>
<td>$Q_2 = 5.75$</td>
<td>$S_2 = 2.70$</td>
</tr>
<tr>
<td>$H_3 = 0.60$</td>
<td>$Q_3 = 8.05$</td>
<td>$S_3 = 3.90$</td>
</tr>
</tbody>
</table>

Based on the obtained parameters for Q and S, calculation of the filtration coefficient has been made according to Krasnopolski (1980), for conditions when artesian aquifer is away from surface waters, there is not monitoring well and when the well radius (r) is very small regarding the radius of its influence (R).

$$ K = \frac{0.16 \times Q}{m \sqrt{r \cdot S}} $$

Input parameters are:

- $Q = 8.05 \text{ l/s} – \text{ Well capacity}$
- $S_3 = 3.90 \text{ m} – \text{ Lowering the water level}$
- $m = 11 \text{ m} – \text{ Thickness of water-bearing layer}$
- $r = 3” – \text{ Radius of well pipe}$

$$ K = 8.35 \times 10^{-2} \text{ cm/s} = 72 \text{ m/ dehydration} $$

$$ m = 11 \text{ m} $$

$$ T = 72 \times 11 = 792 \text{ m}2/dehydration$

Transmissivity coefficient

Transmissivity coefficient (T) was calculated according to the formula for the non stationary conditions of streams in the water-bearing artesian layer:

$$ T = K \times m $$

K – coefficient of filtration

m – thickness of the water-bearing layer

$$ K = 72 \text{ m/ dehydration} $$

$$ m = 11 \text{ m} $$

$$ T = 792 \text{ m}2/dehydration$

Capacity of the drill hole

After the drill hole has been technically equipped, testing of its capacity has been made.

The measurement was conducted for a period of 13.5 months and the results are shown in Table 2.

A granulated gravel has been placed around the drill hole and over it until the surface of the clay court built as a buffer layer which acts to isolate the mineral waters from the penetration of water from upper layers. The mouth of the drill hole was equipped and protected by concrete manhole and plate.

This equipped drill hole was washed with water and e measuring of the capacity was conducted for a period of 10.22.1995 to 05.04.1996.
Table 2

<table>
<thead>
<tr>
<th>Date of measurement</th>
<th>Capacity Q l/s</th>
<th>Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.10.1995</td>
<td>10.22</td>
<td>12.4</td>
</tr>
<tr>
<td>12.11.1995</td>
<td>10.06</td>
<td>12.3</td>
</tr>
<tr>
<td>05.04.1996</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>11.01.1996</td>
<td>9.70</td>
<td>12.0</td>
</tr>
<tr>
<td>10.02.1996</td>
<td>10.28</td>
<td>11.8</td>
</tr>
<tr>
<td>15.03.1996</td>
<td>9.55</td>
<td>12.0</td>
</tr>
<tr>
<td>14.12.1996</td>
<td>10.00</td>
<td>12.1</td>
</tr>
</tbody>
</table>

After the results of the capacity of the drill hole is concluded to be stable hydrogeological conditions. Based on measurements data the exploitation yield for the drill hole is

\[Q_{\text{exp}} = 10.0 \, \text{l/s}. \]

However yield over time will decrease because of the dynamic discharge aquifer and reducing the permeability of the filter tubes over time this will be monitored and analyzed.

Quality of the Water

Quality of the mineral water was analyzed by the National Institute for Health Protection in Skopje have been made two chemical analysis. According to the chemical composition the water belongs to the group of hydrocarbonate, calcic-magnesian water. It is characterized by a pleasant tartness, no smell and has increased mineralization ranging from 708–895 mg / l, according to which it belongs to the group of low mineralized water. According to the pH value (pH = 6.32) water belongs to the group of weakly acidic waters.

Conclusion

In the area of Raotince which was covered by detailed hydrogeological investigations in the pleistocene limnic sediments at a depth of 38 – 67 m, was founded aquifer of two artesian horizons with low mineralized water. Exploitation drill hole D1 works in stable hydrogeological conditions with capacity of

\[Q_{\text{exp}} = 10.0 \, \text{l/s}. \]

According to the chemical composition water belongs to the group of hydrocarbonate, calcic-magnesian water.

According to the mineralization ranging from 708–895 mg / l water belongs to the group of low mineralized waters.

Literature

Лончар И., 1996: *Елаборат за резерви и квалитет на минерални и термоминерални воји на локалностите на Р. Македонија*. Геолошки завод Скопје.

Петковски П., Каровик, Ј., 1977: *Толкувач на основната геолошка карта на Р. М. 1:100 000* на лисий Качник. Геолошки завод Скопје.

Петковски П., Каровик, Ј., 1977: *Основна геолошка карта на Р. М. 1:100 000* лисий Качник. Геолошки завод Скопје.
Резиме

АРТЕСКА МИНЕРАЛНА ВОДА ОД ЛОКАЛНОТРОТ РАОТИНЦЕ, ТЕТОВО

Воjo Мирчовски, Гоше Петров, Владо Мирчовски

Факултет за естествени и технички науки, Институт за Геолошиа, Универзитет "Гоце Делчев"
ул. Гоце Делчев 89, МК–2000 Штип, Република Македонија
vojo.mircovski@ugd.edu.mk

Ключни зборови: артески водоносник; минерална вода; Раотинце; Полошка котлина; езерски седименти

Поголем број на појави и минерални извори се појавуваат по западниот и источниот ободен дел на Полошкаата котлина. Нивното појавување е поврзано со западниот Полошкиот расед кој се протега по западниот обод на котлината со правец СИ–ЈЗ и со источниот Полошкиот расед со правец на протегање СЗ–ЈИ. Во овој труд се прикажани резултатите од деталните хидрогеолошки истражувања за минерална вода на локалитетот Раотинце Тетовско. Врз основа на податоците кои се добили со две истражни експлоатацијни дупнатини на локалитетот Раотинце во плеистоценските езерски седименти на дубочина од 38 – 67 m е констатиран артески водоносник со слабо минерализирана вода.
TYPES OF HYDROTHERMAL ALTERATION WITHIN THE ILOVITZA DEPOSIT

Dobriela Rogožareva

Faculty of Natural and Technical Sciences, "Goce Delčev" University,
Goce Delčev 89, MK–2000, Štip, Republic of Macedonia
dobrielarogozareva@yahoo.com

Abstract: As a result of the recent detailed explorations, Ilovitza deposit is separated to the polymetallic Cu-Au-Mo porphyry deposit, located within Tertiary intrusive complex, whose mineralization is closely related to intensive hydrothermal alterations of surrounding rocks. This deposit represents a part of several porphyry systems in eastern Macedonia and northern Greece, which are in association with igneous complexes and is one of deposits of the type of the deposit Buković–Kadića in Macedonia and Scouries in Greece. Hydrothermal alterations, as a special mark of the deposit, with our laboratory examinations, were determined as an alteration that characterizes porphyry systems. Between them are distinguished neobiotitization, quartz–sericitization, silicification, argillitization et al one of the most intensive alteration is silicification (around 49%), which in association with alunitization (around 40%), encompasses the apical parts of intrusive complex.

Key words: porphyry system; intrusive complex; neobiotitization; quartz–sericitization; silicification; argillitization

INTRODUCTION

From the historical aspect, Ilovitza deposit, which is located in eastern Macedonia, in the vicinity of Strumica city, have always been interesting for exploring, as indicated by the data in the form of travel notes, as well as numerous papers submitted by Tomić, 1936; Шоптрајанова, 1957; Стојанов, 1966; Стојановић, 1972 etc.. Recent investigation which started in 2004 were made by the company Phelps Dodge, and today, extended from the company EurOmax, on whose basis Ilovitza deposit is separated as deposit whit porphyry type of Cu-Au-Mo mineralization (Aleksandrov and Bombol, 2008). Shows characteristics of the connection with Tertiary magmatism and the same is considered as deposit of the type of deposits from the zone Lece-Chalkidiki (Serafimovski, 1990, 1993). Examinations which include X-ray and microscopic examinations of the samples, proved the presence of hydrothermal alterations which is closely related to the porphyry mineralization (Поројапена, 2010). Between them could be separated: supergene sulphide alteration, weak propylitic alteration, advanced argillic alteration, quartz-sericite-pyrite (“phyllic”) alteration and potassium metasomatism with the presence of intermediate argillic alteration. In addition, in view of the mineralization especially are interesting deeper parts of the deposit, especially zones and their contact parts where the quartz-sericite-pyrite alteration is developed and potassium metasomatism with the presence of intermediate argillic alteration.

REGIONAL GEOLOGY, GEOTECTONIC AND METALLOGENIC POSITION

In the Republic of Macedonia even and broader, “Ilovitza” deposit represents one of the more significant porphyry deposits of Cu-Au-Mo.

It is located on the territory of the Republic of Macedonia, more precisely in its southeastern part, at about 17 km at a distance from Strumica city, in the immediate vicinity of the Ilovitza village.

In view of the regional geotectonic position, “Ilovitza” deposit belongs to Serbian-Macedonian Massif (Zagorchev et al. 2008) and the Serbian-Macedonian Metallogenic Zone (Janković, 1977; Serafimovski, 1990), in belt, in whose geological construction participate late Proterozoic to Palaeozoic metasediments and granitoids (Figure 1).
Fig. 1. Regional position of the “Ilovitza” deposit (Serafimovski, 1990)
The processes that took place in the frame of the SMM have caused structure of the volcanic apparatus, domes and regional dislocations, as the Tupal dislocation and dislocation Besna Kobila-Osogovo (Serafimovski, 1990; Aleksandrov, 1992). These regional dislocations are separated as very important in the structural control on the intrusive complexes of granitoides (Ракичевиќ et al. 1980; Janković et al. 1995; Janković and Serafimovski, 1997). Actually, creation and spatial distribution of the magmatism and the ore are in function of the structural factor of a control or disjunctive-depth structures that are present in the Ogražden granite massif and have direction along the borders of the basic geotectonic units: Serbian-Macedonian Massif and the Vardar Zone (Serafimovski, 1990).

GEOLOGICAL CHARACTERISTICS OF THE BROADER AREA

The Ogražden granite massif is located in the southeast part of the Republic of Macedonia, in to large-scale geotectonic unit of the Serbian-Macedonian Massif (Figure 2). The fundament in which the broken the Palaeozoic Variscan granite massif is represented by Precambrian and Rif-Cambrian rocks. The Precambrian lithological is represented by gneisses (the two mica, the biotite, the muscovite, the phorpyroblastic) micashists, amphibolites. The Rif-Cambrian is represented by the amphibole and epidote-quartz-sericite-chlorite shists. From the structural aspect, the massif Ogražden represent a batholite, which during the Variscan orogen phase was intrude in the fundament and is characterized by intense disjunctive tectonic or fault shape with general direction NW–SE.

During the Tertiary, along rupture structures in the consolidated Ogražden granite masses in the gneisses have volcanic acts that contributed to creation of dacite and andesite with which is connected hydrothermal changes. They represent subvolcanic to volcanic disruption in the granite and gneisses (Ilovitza, Dvorište, Štuka, Sušica).

Mineralogical-petrographic caracteristics of the Ogražden massif indicate that is it quite heterogeneous and is basically represented by calcalkaline granites. These granites shall occupy the central parts of the mountain Ogražden and is represented by: biotite coarse-grained granites, leuco­crete coarse-grained granites, graniteporphyres, muskovite leucocreat granites, two mica medium grain granites, biotite porphyry granites and granodiorite, leucocret schist granites.

From mineralogical aspect, the Ogražden massif is represented by large crystals of feldspar, a large amount of biotite and quartz. From petro­graphic aspect, the same are characterized by al­otriomorfic grain to porphyry structure with massive, and sometimes the weaker schists texture.

Hydrothermal changes in the dacite–andesite caused almost completely destroyed primary structure and changes in the mineral composition. These changes are manifested in the form of silicification, sericitization, alunitization, kaolinitization and some places opalitization and chloritization.

The zone of intensive silicification and sericitization space is expressed on the west side of the dacite–andesite disruption.

The zone of intensive silification and alunite­ization space is expressed on the east part of the dacite–andesite disruption, in which the presence of alunite varies from 20–50%.

Noticed that in the parts where alunite contains are moving within the limits of 20–48%, sulphide mineralization is missing, similar as well as in Plavica polymetallic systems (Stojanov, 1980) and Dudica (Ivanov and Ivanova, 1980). However, in the parts of intensive silification and alunitization are registered and certain contents of gold (over 19 g/t), which mark one epithermal area, where the mineral components are products of acidly sulfate solutions (Serafimovski and Aleksandrov, 1995).

TYPES OF HYDROTHERMAL ALTERATIONS

According typomorphic minerals and on the basis of the results derived from X-ray examination of samples, as well as so far, the degree of ex­plorations, within the Ilovitza deposit may be sepa­rated the following types of hydrothermal alter­ations (Figure 3).
Fig. 2. Structural-geological map of the Ogražden granitoide massif

Fig. 3. Development of the types of the hydrochemical alterations in "Ilovitza" deposit
Supergene sulphide alteration

One of the important features of the “Ilovitza” porphyry Cu-Au-Mo deposit is the presence of the deep supergene sulphide zone of alteration, which locally reaches a depth more than 150 m, similar to the appearances in the polymetallic system Bukovik–Kadiica (Tasev, 2010).

Is characterized by oxidation, leaching and intensive argillitization and includes the appearances of pyritization, limonitization and secondary sulphide enrichment.

Oxidized and leached zones on the surface are recognized by the "coverage" of metals in the supergene clay minerals, limonite (goethite, hematite and jarosite) and residual quartz. The secondary (supergene) zones containing chalcocite, covelline and other Cu₂S minerals (digentite et al.), hrizokol, native copper and copper oxides, as well as carbonate and sulfate minerals (Panteleyev, 1995; Tasev, 2010).

Pyritization is a direct indicator that there were conditions for sulphide mineralization. Limonitization is widespread, especially in quartz–alunite–limonite breccias (Figure 4).

![Fig. 4. The core of silica–alunite–limonite breccia](image)

In the products which occurred after the formation of the primary mineralization, and as a result of supergene sulphide oxidation, occur in the area of the oxidation-reduction zone (Emmons, 1917; Garrels, 1954; Cifliganec, 1993; Tasev, 2010). This area on the secondary sulphide ore in “Ilovitza” deposit, which in some parts is possible over and above 100 m (locally over 150 m) was built by chalcocite and covelline and the same has no particular economic significance.

![Fig. 5. Intensely altered core of the drill hole PDIC-04-01](image)

Propylitic alteration

This alteration phenomenon occurs in the end-edge areas of the zone of alteration and is characteristic of the andesite porphyry which are characterized by the presence of chlorite-epidote-clay with limonite veinlets and Mn oxides in outcrops (Donkova, 2006).

Occurs in the vicinity of the other alteration types and is characterized with very weak intensity associated with the zeolites, so in the individual parts almost is absent (Ivanov and Ivanova, 1980).

The zeolitization, which registered a low occurrence is manifested in the surface, more shallow parts of the terrain with appearance of analcime, who is the registered in PDIC-06-07 in sample number 1, with contents of 14 %.

Advanced argillic alteration

Advanced argillic alteration is widespread, immediately over Cu-Au-Mo porphyry system in the peripheral parts of the intrusive, controlled by the presence of deep normal faults.

Includes kaolinite and quartz, as well as alunite, natroalunite, natrolite, ilite, sercite, limonite and pyrite.

Associated with silicification and alunitization, which are manifested with structurally-controlled appearance, in which the silicification and silica- or silica-alunite-sulphide-limonite alteration is surrounded by narrow zones of clay alteration and bleaching, hosted in both fractured zones within basement granite, or within dikes/pods of Tertiary tuff-brecchia (Carter, 2007).
The alunitization especially is characteristic for the apical parts of the intrusive, where it is developed silica-alunite litho-cap, while the process of alunitization is related to the mineralization, and especially with the zones of stock-work mineralization.

The alunitization also is registered in the core of drill hole, more precisely in drill hole PDIC-04-01, in which are determined the most contents of alunite presence in the sample number 1 (37%), where with the quartz represent the most dominant minerals in the sample (Table 1).

Table 1

Results of X-ray analysis of the more significant minerals (%) of drill hole PDIC-04-01

<table>
<thead>
<tr>
<th>Number of sample</th>
<th>Quartz</th>
<th>Alunite</th>
<th>Hidromuskovite</th>
<th>Fluorapatite</th>
<th>Amphibole</th>
<th>Kaoalinite</th>
<th>Muscovite type of mica</th>
<th>Muscovite</th>
<th>Pyrite</th>
<th>Muscovite + ilite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54</td>
<td>37</td>
<td>4</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>–</td>
<td>25</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>46</td>
<td>10</td>
<td>27</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>5</td>
<td>32</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>52</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>35</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>53</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>–</td>
<td>22</td>
<td>10</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>24</td>
<td>12</td>
<td>11</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>42</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>1</td>
<td>–</td>
<td>7</td>
<td>17</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>–</td>
<td>26</td>
<td>6</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>11</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Among the rest, the intensity in his appearance shows and the silicification, which is probably a product of the completed leaching of the cations and the result of the decomposition of feldspars.

In the Ilovitza deposit, it is manifested by the presence of quartz in the form of two generations or more fine-grained, which appears in the base of the rock mass and than suppressed the primary mineralization and coarse-grained, in the form of vein-lets with varying thickness, which arise with fulfill of the cracks and fractures with silica matter.

Quartz-sericite-pyrite (“phyllic”) alteration

Quartz-sericite-pyrite (“phyllic”) alteration is located below the zone of the advanced argillic alteration and is represented by intense quartz-sericite-clay-FeOx alteration, which contains which contains larger bodies of quartz-alunite alteration, and the same represents proximal zone of significant ore changes. As such shall be determined in hosted in both basement granite and Tertiary magmatic rocks (Carter, 2007).

This zone of alteration in the deeper parts is associated of stock-work quartz-pyrite-FeOx alteration and intense clay-sericite alteration largely confined to Tertiary dacite breccia and dacite-granodiorite intrusive rocks (Carter, 2007).

The silicification is the companion of the phyllyte alteration and variable is influential in the most of part of stock-work and the most of the most of the dykes. The quartz veins show an environment of weak sericite halos.

The appearance of phyllyte alteration is characterized by an increase in the contains of muscovite, which arises by replacing of the orthoclase and plagioclase and the same has gradually transition towards other alterations.

Also, iron free from the alterations of iron-bearing minerals, as well as iron and sulphur additions of the fluid, can formed pyrite, which increases in the deeper levels of this zone.

He is present in the form of veins and impregnations, so the pyrite vein-lets reach a thickness of (8–10 mm) and in some places they are replaced by chalcopyrite. The numeral sulphide vein-lets formed a stock-work which is accompanied by quartz-sericite-pyrite and the traces of chalcopyrite alteration with some content of kaolinite (Figure 6).

Fig. 6. Quartz-sericite-pyrite alteration with intensive quartz and pyrite vein stock-work

In the deeper parts and closer to the core of the system, there are occurrence of intensive stock-
work with lateral quartz veins of older generation, crosscutting with younger quartz-pyrite and the youngest pure pyrite veins and vein-lets. Among the rest this zone is characterized by a higher degree of copper contents.

Potassium metasomatism with the presence of intermediate argillic alteration

Allocating of the potassium metasomatism with the presence of intermediate argillic alteration is a result of overlapping of these two alteration types.

Intermediate argillic alteration is characterized by the appearance of kaolin, which is determined and with the X-ray analysis. Arises as a result of the alteration changes of the plagioclase, which become replaced by kaolinite and appears near the ore body. The potassium feldspar is less afflicted with the processes of metasomatism, when it is formed sericite, while similar biotite formed chlorite. This alteration zone is represented by central quartz-magnetite-sulphide FeOx stock-work and dissemination, with matrix alteration of illite-sericite, chlorite (“intermediate argillic alteration”) containing patches of residual secondary biotite and K-feldspar, hosted in dacite-granodiorite porphyry, and minor andesite and latite-andesite porphyry dikes (Carter, 2007).

The shallow level of the alteration may be interpreted as supergene (zone of secondary sulphide enrichment) cover over the deposit, so it is not excluded and probability and deeper clay alterations of the feldspar to have the same origin. In this zone in individual parts and chalcocite occurs in the form of impregnations and vein-lets arise with the suppression of the chalcopyrite (Figure 7).

![EOIC 07–10 (209 m)](image)

EOIC 07–10 (209 m)

Fig. 7. Core of intensely altered stock-work with chalcocite in impregnations and veinlets

This zone is characterized by gradual transitions towards the potassium alteration, which represents the earliest and relatively high temperature alteration, which results in enrichment with potassium.

This type of alteration has a chance to be formed before the full crystallization of the magma, as indicates the presence of unrelated flexuous vein-lets.

Is represented by the appearance of orthoclase and secondary biotite, accompanied by a chlorite and sericite, but also we can notice the appearance of calcite and siderite in the deeper parts of the drill holes (Figure 8).

![Roentgenogram with the results of X-ray analysis of the sample number 11 of EOIC-07-10](image)

Fig. 8. Roentgenogram with the results of X-ray analysis of the sample number 11 of EOIC-07-10
Based on the X-ray analysis of the core of the several drill holes is found that the level of the occurrence of the potassium metasomatism starts from about 165.00 m, what exactly is determined by the appearance of the orthoclase, whose appearance with variable contents is present until the end of examined drill holes.

Its genesis probably is a result of the metasomatism of the plagioclase in the K-feldspar, while secondary biotite with metasomatism of hornblende or chlorite.

Magnetite and hematite are general. The common sulphides are pyrite, molybdenite and chalcopyrite.

In the following are shown individually photographic images of the core of this zone, as well as mineralogical-alteration features of the core of the deeper parts of the drill holes.

On Figure 9 is given chlorite-sericite-clay-magnetite alteration with the quartz-magnetite vein-lets. In the deep parts, chlorite and magnetite become stable. Originally, the rock is altered to chlorite and magnetite. Replacement of the plagioclase by dark brown montmorillonite to the rock gives yellow-brown appearance.

In the deepest levels of the examined drill holes biotite has been preserved. At this level, is present facies of quartz veins (Figure 10), but, should be said that the density of the veins was reduced than in the stock-work zone of the higher level of the drill holes or the developed intensive stock-work go reaches its maximum in the periphery of the intrusive, while in the deeper parts more prevalent is the disseminated mineralization, which is accompanied by chlorite-sericite-magnetite–biotite alteration, which is covered with a late argillitization.

Among the rest, clearly can be noted that the deeper parts of the drill holes are characterized by late igneous occurrences as clasts of quartz veins, igneous breccias with quartz basis mass and some aplite structure. Also, should be said that at the top of this deep intrusive system is registered an appearance of typically developed system of alteration to the "worm-like" silicification.

Based on data derived from examinations and explorations, Illovitz deposit by its characteristics can be set aside as copper porphyry deposit of type of deposit Scurries in Greece, which represents one of the first discovered porphyry deposits in Lecce–Chalcidice metallogenic zone.

Similar hydrothermal alterations, altered zones and mineralization which are present in Illovitza deposit can meet and among many other porphyry deposits, such as Chukvikamata, Chile (Sinclair, 2009).

However, the characteristic mark of the Illovitza deposit is its intense and widespread hydrothermal alterations, the deep zone of sulphide oxidation, leaching and argillitization.

CONCLUSION

The recent detailed explorations and examinations of the “Illovitza” deposit pointed out on the presence of the polymetallic Cu-Au-Mo porphyry deposit, located within Tertiary intrusive complex, whose mineralization is closely related to intensive hydrothermal alterations of surrounding rocks.

The hydrothermal alterations are allocated on the basis of the typemorphic and characteristic fol-
low minerals. Between them can be separated the following types of hydrothermal alterations: supergene sulphide alteration, weak propylitic alteration, advanced argillic alteration, quartz-sericite-pyrite (“phyllitic”) alteration and potassium metasomatism with the presence of intermediate argillic alteration. The ore mineralization in the biggest part is related to the zones where is developed the quartz-sericite-pyrite alteration and potassium metasomatism with the presence of intermediate argillic alteration, as well as in their contact parts. From aspect of the developed zones of hydrothermal alterations in "Ilovitza" deposit, may be noted that with him have can be developed the main zone of alterations that is also present almost in all porphyry deposits.

REFERENCES

Донкова, А., 2006: Анализа на проспективските истражувања на локалноста Иловица-Штук, дипломска работа, РГФ, Штип, 70 стр.

Zagorchev, I., Dabovski, C. and Dumurdzhanov, N., 2008. Tectonic structure of Bulgaria and Macedonia based on
Резиме

ТИПОВИ НА ХИДРОТЕРМАЛНИ АЛТЕРАЦИИ ВО НАОЃАЛИШТЕТО „ИЛОВИЦА“

Добриела Рогожарева

Факултет за природни и технички науки, Универзитет „Гоце Делчев“
Гоце Делчев 89, МК-2000 Шибеник, Република Македонија
dobrielarogozareva@yahoo.com

Ключни зборови: порфирски систем; интрузивен комплекс; необиотитизација; кварц-серицитизација; силификација; аргилитизација

Како резултат на неодамнешните истражувања, наоѓалиштето „Иловица“ е издвоено како полиметалично порфирско наоѓалиште на Cu-Au-Mo, во рамките на Терцииерниот интрузивен комплекс, чија минерализација пројавува карактеристики на тесна поврзаност со интензивните хидротермални промени на околните карпи. Ова наоѓалиште претставува дел од неколкуте порфирски системи во источна Македонија и северна Грција кои се во асоцијација со магматските комплекси и се вбројува во наоѓалиштата од този тип на наоѓалиштето БуковќКадиница во Република Македонија и Скурнес во Грција. Хидротермалните промени, како посебен белег на наоѓалиштето, со нашите лабораториски испитувања, беа одредени како промени кои ги карактеризираат порфирските системи. Помеѓу нив се издвојуваат необиотитизација, кварц-серицитизација, силификација, аргилитизација итн. Една од најинтензивните промени е силификацијата (околу 49%), која во асоцијација со алунитизацијата (око-лу 40%), ги зафаќа апикалните делови на интрузивниот комплекс.
HEAVY METALS IN THE WATER FROM THE DRAIN-BASIN OF THE MAVROVICA HYDRO-ACUMULATION – EASTERN MACEDONIA

Orce Spasovski, Trajče Mitev

Faculty of Natural and Technical Sciences, "Goce Delčev" University, Goce Delčev 89, MK-2000, Štip, Republic of Macedonia
orse.spasovski@ugd.edu.mk // trajce.mitev@ugd.edu.mk

Abstract: In this paper the results and conclusions from the researches of the pollution of the water with heavy metals in the drain-basin of Mavrovica hydro-accumulation are given. With our analysis, there is an effort made to see the real conditions in the examined area, and to determine the position of presence of heavy metals in the water of the above mentioned basin. The samples of water were taken from river Orelska and the smaller rivers (streams) near river Orelska. The analyses of the taken samples were made in the frames of one sequence of analysis of the instrument Atomic emissive spectrometry, with inductive harnessing plasma (AES-ICP). From the last examinations of contaminated areas as our area of interest, we can notice that the following group of elements should be kept track of: Mn, Fe, Al, Pb, Zn, As, Cd, Cu, Ni, Co, Ag, Cr, Ti with the possibility of several elements that will show higher concentrations of MAA (maximum allowed amounts). After the analysis and interpretation of the data, the assumptions were confirmed for increased values of the following metals: Al, Mn, Fe, Zn, As, Cd, Cu. The whole drainage system that gravitates through river Orelska is contaminated. Increased concentrations of some of the metals were very often, several times above the maximum allowed concentrations.

Key words: heavy metals; pollutions; AES-ICP; water; river Orelska; river Makreska, river Kiselička, drainage area

INTRODUCTION

The pollution of the living environment in the past several decades is subject of which was given very little attention, but in the last several years this is very delicate subject with high priority. Very important is the problem of heavy metal and toxic metals presence – contaminates in the drinking water. Actualizing this question, we must say that the supply with drinking water, of the local population in the past period is strictly from the hydro-accumulation Mavrovica. Because of the suspicious quality of the water from the above mentioned accumulation during 2003 there was a decision made, for forbidding the further usage of the water of this accumulation for drinking water. Having this fact in mind there is a need for one more studious analysis of the water in this drainage-area.

There are more confluents of river Orelska that are used by the local inhabitants for different needs. In the near by environment of the above mentioned area, there are large number of agricultural surfaces that are used for manufacturing different agricultural products. The last geological, geochemical and ecological researches showed the potential possibilities of natural pollution in the examined area. Even more significant reason for getting across this thesis is more and more strict legal standards for the quality of the living environment in which people lives, and work in this region.

In the research of the chemical and geochemical characteristics of the flowing water from the drainage area of the Mavrovica hydro-accumulation, and her near surrounding, in this period, were very little examined. The data from this researches can be found in the papers of Rakicević at al. (1968), Karađovanović at al. (1975a and 1975b), Dumeurjanov at al. (1976), Гузелковски (1997). Spasovski at al. (2007, 2009, 2010).

The area that was under research is covering river Kiselička, river Makreska and river Orelska until it’s infusion in the Mavrovica accumulation (Fig. 1).
MATERIAL AND METHODS

In the frames of the researches there were preliminary field activities made, that were consisted from preliminary monitoring of the area, in order to gain preliminary impressions of the field.

Starting the field experiments there are the points of research defined, and in the same time the profile lines, which are defining basic field of research were defined. In the frames of foreseen activities, there are basic field researches made, that are consisted of preliminary tracking the field trough topographic determinations of the points of testing, and determination of the profile lines, from which the water samples will be taken. In the frames of this phase the field that embraces the flow of river Orelska and surrounding streams, starting from river Kiselička trough Blagin dol, to the inculcation of river Makreska in river Orelska, continuing to the inculcation to the mentioned hydro-accumulation were cultivated.

Starting phase of the experiment was taking samples from water from the named points of examination. Taking the samples from water is consisted from taking samples of water from the middle of the river flow, in clean plastic dish (plastic bottle from 1 L).

It is necessary to say that during assumption of the samples from the water, in the same time the filtration is done, trough paper filter with dimensions of the caliber of 45 µm. Before closing down the dishes, acidifying with 0.4 ml from 50% nitrogen acid (HNO₃) is done. This measure of caution is done in order to prevent sedimentation of the metals on the walls and the bottom of the dishes. Taking the samples was followed with certain determination of the points of experiment with help of topographic map in proportion 1 : 25 000. Laboratory examinations are consisted from analysis of taken samples with the method AES-ICP and interpretation of the gained results.

RESULTS AND DISCUSSION

In the frames of the foreseen examinations, samples from the water were taken from the middle of the river flow where the water shows calm flow. Every test is marked with unique number, and the places of the taken samples in the field are shown on the topographic map (Fig. 2).
The results that are gained for the contents of the heavy metals in the water from the drainage basin of hydro-accumulation Mavrovica are given in Table 1.

To receive more complete impressions for the concentration of the analyzed elements, in the samples of water, taken from the drain area of Mavrovica hydro-accumulation, in the further examinations will be exhaustively presented and commented the results given in Table 1.

In the same table there are also given the standards for the contents of the analyzed elements in the moving water, in order to compare gained results with the standards.

In the basis on the data, given in Table 1, certain notes can be given, about the presence of certain heavy metals in the water from her confluents, and also the opinion for the reasons that redound to increased contents of certain metals.

Calcium in the tests taken from river Orelska and Makreska is showing in amounts, smaller than maximum allowed concentrations. In the tests taken from river Kiselička calcium is showed in values higher than maximum allowed concentrations. In the test KR-3 (279.60).
Table 1
Content of heavy metals in the flowing water from the drainage basin of Mavrovica hydro-accumulation.

<table>
<thead>
<tr>
<th></th>
<th>ORv-1</th>
<th>ORv-2</th>
<th>ORv-3</th>
<th>ORv-4</th>
<th>MRv-1</th>
<th>MRv-2</th>
<th>KRv-1</th>
<th>KRv-2</th>
<th>KRv-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>0.008</td>
<td>0.005</td>
<td>0.111</td>
<td>0.001</td>
<td>0.004</td>
<td>0.035</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Stand</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Se</td>
<td>0.008</td>
<td><0.005</td>
<td>0.035</td>
<td>0.004</td>
<td>0.005</td>
<td>0.004</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0001</td>
</tr>
<tr>
<td>Stand</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Ag</td>
<td>0.012</td>
<td><0.001</td>
<td>0.001</td>
<td>0.004</td>
<td>0.005</td>
<td>0.004</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0001</td>
</tr>
<tr>
<td>Stand</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Al</td>
<td>0.003</td>
<td>0.002</td>
<td>0.012</td>
<td>0.238</td>
<td>4.67</td>
<td>5.21</td>
<td>69.15</td>
<td>71.12</td>
<td>72.89</td>
</tr>
<tr>
<td>Stand</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Ca</td>
<td>78.545</td>
<td>60.026</td>
<td>74.492</td>
<td>68.07</td>
<td>96.19</td>
<td>90.15</td>
<td>279.20</td>
<td>266.14</td>
<td>279.60</td>
</tr>
<tr>
<td>Stand</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td></td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Ni</td>
<td>0.003</td>
<td>0.032</td>
<td>0.021</td>
<td>0.004</td>
<td>0.0054</td>
<td>0.0050</td>
<td>0.0050</td>
<td>0.049</td>
<td>0.052</td>
</tr>
<tr>
<td>Stand</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Mn</td>
<td>0.013</td>
<td>0.010</td>
<td>0.016</td>
<td>0.012</td>
<td>0.0049</td>
<td>0.0045</td>
<td>4.41</td>
<td>4.93</td>
<td>5.47</td>
</tr>
<tr>
<td>Stand</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Fe</td>
<td>0.089</td>
<td>0.020</td>
<td>0.081</td>
<td>0.062</td>
<td>0.029</td>
<td>0.032</td>
<td>5.45</td>
<td>5.76</td>
<td>5.95</td>
</tr>
<tr>
<td>Stand</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Cr</td>
<td>0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.001</td>
<td>0.004</td>
<td>0.004</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Stand</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Mg</td>
<td>18.765</td>
<td>23.449</td>
<td>20.266</td>
<td>15.42</td>
<td>16.23</td>
<td>17.46</td>
<td>52.14</td>
<td>47.12</td>
<td>52.09</td>
</tr>
<tr>
<td>Stand</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Na</td>
<td>20.700</td>
<td>21.526</td>
<td>19.198</td>
<td>22.46</td>
<td>29.06</td>
<td>29.20</td>
<td>66.79</td>
<td>63.45</td>
<td>66.79</td>
</tr>
<tr>
<td>Zn</td>
<td>0.009</td>
<td>0.011</td>
<td>0.081</td>
<td>0.579</td>
<td>0.012</td>
<td>0.010</td>
<td>0.61</td>
<td>0.55</td>
<td>0.71</td>
</tr>
<tr>
<td>Stand</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cu</td>
<td>0.006</td>
<td>0.008</td>
<td>0.009</td>
<td>0.008</td>
<td>0.011</td>
<td>0.010</td>
<td>0.022</td>
<td>0.023</td>
<td>0.028</td>
</tr>
<tr>
<td>Stand</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Pb</td>
<td>0.001</td>
<td>0.001</td>
<td>0.010</td>
<td>0.017</td>
<td>0.007</td>
<td>0.006</td>
<td>0.002</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Stand</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cd</td>
<td>0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.001</td>
<td>0.0017</td>
<td>0.0018</td>
<td>0.0032</td>
<td>0.0033</td>
<td>0.0048</td>
</tr>
<tr>
<td>Stand</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Co</td>
<td><0.001</td>
<td>0.001</td>
<td>0.014</td>
<td>0.026</td>
<td>0.017</td>
<td>0.019</td>
<td>0.142</td>
<td>0.145</td>
<td>0.150</td>
</tr>
<tr>
<td>Stand</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Na</td>
<td>20.700</td>
<td>21.526</td>
<td>19.198</td>
<td>22.46</td>
<td>28.12</td>
<td>29.06</td>
<td>55.14</td>
<td>58.15</td>
<td>66.79</td>
</tr>
<tr>
<td>pH</td>
<td>5.98</td>
<td>6.81</td>
<td>6.88</td>
<td>5.93</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Symbols of taken samples: ORv – sample of water taken from river Orelska; MRv – sample of water taken from river Makreska; KRv – sample of water taken from river Kiselička

Magnesium, not like calcium, in all the tests is shown in concentrations lower than maximum allowed concentrations. What is interesting for this element is gradually increasing its values, going towards headwater of the studied rivers, and especially river Kiselička where are the highest values of 52.09 mg/l (sample KRv-3).

The values gained for alkaline metals Na and K are showing significant variation in the analyzed samples. The values that are gained for Na are moving in the frames from 19.198 mg/l in the sample ORv-3 to maximum of 66.79 mg/l in the sample KRv-3. Potassium is shown in concentrations significantly smaller compared to Na, and the
same are moving in the frames from 5.03 in the sample ORv-2 to maximum 9.451 mg/l in the sample KRv-1.

The data for ferum (Table 1) are showing its small presence in the largest number of analyzed samples. The exception makes only the samples of water from river Kiselička, where the ferum is noted with values larger than maximum allowed concentrations and are moving in the frames from 5.45 mg/l (sample KRv-1) to 5.95 mg/l (sample KRv-3). Down the river Kiselička flow, a red deposit can be noticed, because of the presence of the oxides if ferum, but also the water is showing aetic taste.

Aluminum presents the biggest infector of the whole studied area. In the water samples taken from river Orelska, the values that are gained during the examination are lower than maximum allowed concentrations. The values gained for the aluminum in the samples of water in river Makreska and river Kiselička are showing its significant presence in this two rivers. Namely, the values for aluminum in the samples of water from river Makreska, are more than 10 times higher than maximum allowed concentrations. The results that are gained for the aluminum in the analyzed water samples from river Kiselička are showing very large contamination of this space with aluminum, indeed the values that are higher over 146 times compared to standards.

Significant infector of the studied area is also the zinc. The values gained for zinc in river Orelska (0.579 mg/l) and in the samples of water from river Kiselička (0.55 to 0.71 mg/l), are confirming very clearly its presence in the studied area. These values are showing that the concentrations of zinc are 7 times higher compared to the standards.

Manganese, like the zinc is significant infector of the researched area. The values that are gained for manganese in the river Kiselička are moving in the frames from 4.41 to 5.47 mg/l are around 10 times higher compared to the standards, and by that, it is confirmed its large presence in the examined area.

Nickel, cobalt and cadmium are noted in every examined samples, but the values that are gained in the largest number of the samples are lower than maximum allowed concentrations. In the samples of water taken from river Kiselička, of the above mentioned elements, the values that are gained that are higher, but also very close to the standard values.

Cuprum, plumbum and chrome in all tested samples are shown in concentrations that are lower than MDK and are not presenting contaminates in the researched area.

CONCLUSION

According the results that are gained, from the accomplished chemical researches for the content of heavy metals, in the flowing water from drainage basin of hydro-accumulation Mavrovica, it can be concluded that certain group of elements (Al, Mn, Zn, Fe), in biggest part from researched samples, are showing significant enlargement compared to MDK. Other group of elements (Ni, Co, Cd) is showed in concentrations very similar to the standard values, and the third group is elements (Cu, Pb, Cr) that are showing very low values according to MDK.

The researches are showing that there is legislative in the allocation of the elements that are infectors, in fact their continuous tracing and gradually enlargement of their values starting from river Orelska to Kiselička. This kind of appearance of the elements-contaminants, clearly can locate the natural source of contamination, the area around the source of river Kiselička.

For the metal concentrations in the flowing water, geological composition of the researched area has influence, geochemical characteristics of the elements-contaminates, as well as pH and Eh factors.

This conclusions and notes are based on relatively small number of researches (total 9 samples of water), but any way they are giving clear picture for presence of certain group of elements-contaminants. The values that are gained for the examined elements, are initializing larger amount of problems (research of inculcation of river Orelska in hydro-accumulation Mavrovica, awareness for the composition of water in hydro-accumulation, monitoring of the water in different time periods, examinations of mineralogical and chemical composition of the environment trough where the flowing water are passing) with aim to see the source of contamination and the influence of the elements that are contaminants of the living environment.
REFERENCES

Ѓузелковски, Д., 1997: Подземниите води (издан) за решавање на водоснабдувањето на Република Македонија и њивна заштита, Институт Геохидро проект, Скопје.

Думурданов, Н., Христов, С., Павловски, Б., Иванова, В., 1976: Толкување за основната геолошка карти на Република Македонија за лисисвод Велес, ОГК СФРЈ 1 : 100 000, Геохидролшки завод Скопје.

Карајовановиќ, М., Хаџи-Митров и, 1975б: Основна геолошка карта на Република Македонија за лисисвод Велес, ОГК СФРЈ 1 : 100 000, Геохидролшки завод Скопје.

Карајовановић, М., Хаџи-Митров, С., Аранѓеловиќ, Р., 1975а: Основна геолошка карта на Република Македонија за лисисвод Велес, ОГК СФРЈ 1 : 100 000, Геохидропроект, Скопје.

Резиме

ТЕШКИ МЕТАЛИ ВО ВОДАТА ОД СЛИВНОТО ПОДРАЧЈЕ НА ХИДРОАКУМУЛАЦИЈАТА МАВРОВИЦА БИ ИСТОЧНА МАКЕДОНИЈА

Орце Спасовски, Трајче Митев

Факултети за природни и технички науки, Универзитет во Гоце Делчев,

Гоце Делчев 89, МК-2000, Велеш, Република Македонија

orce.spasovski@ugd.edu.mk // trajce.mitev@ugd.edu.mk

Ключни зборови: тешки метали; загадување; AES-ICP; вода; Орелска Река; Макрешка Река; Киселичка Река; сливно подрачје.

Во овој труд се дадени резултатите и заклучоци од истражувањата на загадувањето со тешки метали во водата од сливното подрачје на хидроакумулатата Мавровица. Со нашите испитувања, направен е обид да се согласиат реалните состојби во испитуваното простор и да се утврди состојбата за присутноста на тешките метали во водите на споменатото простор. Примероци на вода беа земени од Орелска река и помали реки од нејзина не-посредна околина. Анализа на примероците беше спроведена во рамките на една серија на анализи на инструментот Атомска емисиона спектрометрија со индуктивно спрегната плазма (AES-ICP). Од досегашните искуства на контаминарите на подрачја како што е подрачјето од интерес, може слободно да се констатира дека треба да се следи следната група на елементи: Mn, Fe, Al, Pb, Zn, As, Cd, Cu, Ni, Co, Ag, Cr, Ti со можност и некои елементи кои ќе покажат поголеми концентрации од МКД (Максимално дозволени количества).

По анализата и интерпретацијата на податоците беа потврден претпоставките за зголемен вредност на следните метали: Al, Mn, Fe, Zn, As, Cd, Cu. Контаминаран е целосниот дренажен систем кој гравита кон Орелска река. Зголемените концентрации на некои од металите многу често беа за неколку пати поголеми од максимално дозволените концентрации.
THE POSSIBILITY OF USE OF KREMIĆ GRANITOID (SERBIA) AS AN ARCHITECTURAL STONE

Lidja Kurešević
IMS Institute
Bulevar vojvode Mišića 43, 11 000 Belgrade, Serbia
lidja.marceta@institutims.rs

Abstract: The stone from the granitoid pluton of Kremić in southern Serbia has been examined in order to evaluate the possibility of its use as an architectural stone. Both field observations and laboratory testing of specimens have been performed. Although the specimens were collected from the field surface level, their physico-mechanical lab test results have shown that the rock mass itself fulfills all the requirements for use as an architectural stone set by the State through Serbian standards. Also, the stone quality is higher in deeper ground levels, where the weathering agents have less intense effects. This stone does not have high ornamental properties, but it has a fine-grained texture and low mica content which has a positive effect on its technical characteristics and susceptibility to processing.

Key words: granitoid; pluton; southern Serbia; architectural stone

INTRODUCTION

Kremić pluton is one of the many investigated under the author's dissertation whose theme is the potentiality of Vardar zone magmatic masses for use as an architectural stone. This plutonite is particularly interesting because it hasn't been investigated from this aspect before and the rock mass fulfills all the requirements for architectural purposes and, unlike other plutons in the Vardar zone, this rock does not contain excessive pyrite.

The Kremić granitoid pluton is situated in southern Serbia, NE from the city Raška. The majority of authors consider it the part of Kopaonik pluton (Urošević et al. 1973; Janković, 1990; Karamata et al. 1992), situated 2 km to the east, on the very border with Kosovo. A belt of schists and serpentinites separates these two plutons at the surface. The present level of erosion yields a Kremić granitoid plutonite surface of about 7 km². Due to poor accessibility and scarce outcroppings, Kremić granitoid is by far less examined compared to the near-by Kopaonik pluton. Also, the architectural stone has never been extracted in it, nor has its potentiality for this purpose been evaluated.

GEOLOGICAL SETTING

The oldest uncovered rocks belong to the upper Paleozoic low-metamorphic series of schists, metabasites, marble etc., known as Veleš series (Wilson, 1933). Magma that gave Kremić granitoid pluton intruded the Veleš series schists, serpentinites and volcanic complex, and metamorphosed them (Mićić, 1966, 1980). Serpentinized perioditites, mostly hartzburgites, represent a part of the "Ibar ultramafic complex". The proximity of the three main fault zones of the Vardar zone in Kopaonik area (Vukašinović, 2005) caused the intense magmatic activity. Volcanic rocks – dacito-andesites, lamproandesites, pyroxene-amphibole andesites, volcanic breccias etc., mostly hydro-
thermally altered, were formed in Oligocene-Miocene (Urošević et al. 1973). The geological setting is shown in Figure 1.

In geotectonic sense, all the plutonic masses of Kopaonik area (Kremić, Željin, Drenje, Crvanj etc.) belong to the Vardar zone, i.e. its sub-unit – Kopaonik unit or block-ridge terrane (Dimitrijević, 1995; Karamata, 1995, 2006; Robertson et al. 2009). This sub-unit spreads to north towards Belgrade and to the south continues into Paikon unit in Greece (Karamata, 2006; Robertson et al. 2009). Magma is intruded into so-called Kopaonik anticline which is disrupted by the east-west trending faults. This fault system was the main magma conduit (Karamata et al. 1992).

The rock texture is hypidiomorphic granular, in places grading into inhomogeneous granular close to porphyritic. General mineral composition: andesine (zonal, average An38.5 %), orthoclase (cryptoperthite, sometimes partly transformed into microcline), quartz (undulate), biotite (more or less transformed into hornblende), hornblende, accesso- ries (magnetite, apatite, zircon, ortite, sphene) (Karamata, 1957).

Table 1

<table>
<thead>
<tr>
<th>Component</th>
<th>Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>60.56</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.70</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.69</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.85</td>
</tr>
<tr>
<td>FeO</td>
<td>3.05</td>
</tr>
<tr>
<td>MnO</td>
<td>0.06</td>
</tr>
<tr>
<td>MgO</td>
<td>3.17</td>
</tr>
<tr>
<td>CaO</td>
<td>5.75</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.94</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.96</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.30</td>
</tr>
<tr>
<td>H₂O +110°</td>
<td>1.22</td>
</tr>
<tr>
<td>H₂O -110°</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Tertiary granitoid rocks of Kopaonik area belong to the Dinaric suite of calc-alkaline magmatic formation of Serbian part of the Balkan peninsula, of late Paleogene-early Neogene age (Cvetković et al. 2002). According to Urošević et al. (1973), all the small plutonic masses in the area were formed in the same cycle of magmatic activity and are supposed to represent the parts of a larger, still covered pluton. All these granitoids are I-type, with identical trend from quartz-diorite to granodiorite and quartz-monzonite, locally granite (Karamata et al. 1992).

Isotopic age analyses (Karamata et al. 1992) have shown that all the plutons in Kopaonik area were formed penecontemporaneously, in Oligocene (K/Ar age 29-35 Ma). K/Ar analysis for Kremić granitoid yielded the age of 32 Ma (on biotite).
TESTING METHODS

As a part of the PhD dissertation, and in accordance with regulatory provisions valid in the Republic of Serbia, the stone from Kremić granitoid pluton has been examined according to Serbian standards – SRPS.B.B3.200:1994 as the basic one and the standards cited therein. The testing is performed in The Stone and aggregate Laboratory of the Materials testing institute in Belgrade. Field examinations were performed during 2009, on available outcrops, on the regional prospecting works level (Vakanjac, 1976). Since the rock mass is not well uncovered, the specimens taken originate from the field surface. As a consequence, there were some hidden fractures in lab samples due to increased weathering level. However, the testing samples have shown plausible values of physico-mechanical characteristics. Undoubtedly the specimens from greater depth will show even better results.

Testing results

Field works. The available crop is situated near the granitoid-serpentinite contact. Granitoid rock has a grey colour, varying from darker to lighter shades. The heterogeneous look is due to more or less dense disposition of mafic minerals. The general look of this rock is very similar to marginal facies of Kopaonik pluton.

The rock has irregular and platy jointing. The plates are about 40 cm thick, cracked into smaller fragments of the longest axis up to 50 cm (Figure 2). Along some plate boundaries the weathering disintegration occurs. The deeper rock parts have blocky setting. Fracture systems have dip direction and dip angle: 127/56 (dividing the rock into plates); 198/50; 30/53 and 147/84 (dividing the plates into smaller pieces).

Topsoil is around 20 cm thick. In more weathered parts the feldspars become lustreless and stained with limonitic colouring and mafic minerals oxidized. On the granitoid-serpentinite contact, both rocks are intensely altered and powdery.

In spite the fact that the rock is exposed to weathering, it is compact and breaks hardly. Deeper parts are increasingly more fresh and compact.

Aplitic-pegmatitic veins are present, but far less than in adjacent plutons (Drenje, Željin).

Physico-mechanical properties testing and microscopic study. Some testing prisms when cut show cracks and fissures. They break mostly along these cracks during testing. Possibly also the presence of large grains predisposes the surface of break. Flexural strength prisms with no cracks have shown very high values, and those with cracks broke immediately and have therefore not been taken into account. The breaking surface is irregular and rough.
Table 2

<table>
<thead>
<tr>
<th>Property</th>
<th>Standard SRPS</th>
<th>Units</th>
<th>Testing results</th>
<th>variation range</th>
<th>average value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frost resistance</td>
<td>B.B8.001</td>
<td>–</td>
<td>no visible changes</td>
<td>no visible changes</td>
<td>durable</td>
</tr>
<tr>
<td>Resistance to Na₂SO₄</td>
<td>B.B8.002</td>
<td>–</td>
<td>mass loss</td>
<td>0.01–0.03%</td>
<td>0.02% mass loss</td>
</tr>
<tr>
<td>Water absorption</td>
<td>B.B8.010</td>
<td>%</td>
<td>0.23–0.68</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Compressive strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– dry</td>
<td>B.B8.012</td>
<td>MPa</td>
<td>153–189</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>– water saturated</td>
<td></td>
<td></td>
<td>100–164</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>– after 25 freeze-thaw cycles</td>
<td></td>
<td></td>
<td>95–154</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Abrasion resistance</td>
<td>B.B8.015</td>
<td>cm³/50 cm²</td>
<td>9.71–10.59</td>
<td>10.01</td>
<td></td>
</tr>
<tr>
<td>Flexural strength</td>
<td>B.B8.017</td>
<td>MPa</td>
<td>31.06–32.51</td>
<td>31.97</td>
<td></td>
</tr>
<tr>
<td>Apparent density</td>
<td></td>
<td>g/cm³</td>
<td>2.660–2.698</td>
<td>2.678</td>
<td></td>
</tr>
<tr>
<td>Real density</td>
<td></td>
<td>g/cm³</td>
<td>2.703</td>
<td>2.703</td>
<td></td>
</tr>
<tr>
<td>Density coefficient</td>
<td>B.B8.032</td>
<td>–</td>
<td>0.991</td>
<td>0.991</td>
<td></td>
</tr>
<tr>
<td>Porosity</td>
<td></td>
<td>%</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

MINERAL AND COMPOSITION

Macroscopic petrographic examination

Both felsic and mafic minerals can be observed. Felsic are feldspars and quartz, mafic comprise hornblende and biotite. Most grains are up to few millimetres. Only the largest K-feldspar porphyroblasts reach over 1 cm.

Feldspars are whitish-grey, translucent to opaque, sub- to anhedral. The samples from the greater depth contain more fresh and translucent feldspars. The largest porphyroblasts have pale purple colour. K-feldspar porphyroblasts occurrence is not rare in Vardar zone granitoid plutons; Divljan and Cvetić (1991) explain its origin by postgenetic K-metasomatosis on a regional scale.

Quartz is rare, probably due to increased basicity of these marginal parts of the intrusion. The grains are mostly isometric in shape, colourless, transparent and cracked.

Mafic minerals grains are mostly up to 1-2 mm in size. Hornblende grains are subhedral, sometimes up to (9x4) mm in size. Euhedral hornblende grains are more rare and up to (8x5) mm in size. In the samples taken from the surficial level, it shows oxidation signs but deeper in the rock mass it is more fresh.

Biotite content is smaller than hornblende; flakes are subhedral, fresh, black in colour, most often up to 2 mm, rarely up to 4 mm in length. Flake aggregates are up to 5-6 mm thick.

Microscopic study

The rock contains plagioclase, quartz, orthoclase, biotite, amphibole and pyroxene.

Plagioclase makes up around 50% of the rock. The grains are most often prismatic, rhombic and xenomorphic. Grains show minor alteration. Larger grains are poikilitic, containing metallic minerals, biotite and apatite. Synthetic and lamellar twins are present.

Quartz is intergranular, xenomorphic, rarely with cataclastic parts. Makes up about 20% of the rock.

Orthoclase is present as large, xenomorphic to ellipsoidal grains, mostly up to (3x3) mm, with minor sericitization; poikilitic, containing plagioclase and mafic minerals.

Biotite is mostly fresh, tabular, with etched margins, rarely chloritized. Often spatially connected with hornblende into small aggregates of mafic minerals.

Amphibole is represented with hornblende of variable chemistry, reflected through colour changes from green to brown. Grains are xenomorphic to hypidiomorphic, altered in a variable degree.

Clinopyroxene has oval grains up to (0.3×0.2) mm, mostly altered. Metallic minerals occur as grains under 0.1 mm, round or angular, sometimes making up the small piles. Apatite is most often poikilitically caught up in larger grains of other minerals. Texture: hypidiomorphic granular. Structure: homogenous

DISCUSSION – EVALUATION OF THE TESTING RESULTS

According to Bilbija (1984) criteria, physico-mechanical properties of the stone are characterizing the tested stone in the following way:

- Density value characterizes it as a heavy stone.
- Porosity characterizes it as being compact.
- Water absorption is very low.
- Resistant to freeze and salt crystallization actions.
- Compressive strength is high.
- Abrasion resistance characterizes it as being on the boundary between hard and very hard.

According to the requirements prescribed in the standard SRPS B.B3.200, and the results of the physico-mechanical properties testing, this stone can be used for paving and cladding both in exteriors and interiors, for all load categories.

CONCLUSION ON USAGE AS AN ARCHITECTURAL STONE POTENTIALITY

The specimens for testing were taken from the surface where weathering was most intense, yet, lab testing results have shown that this stone is in full accord with the requirements of the Serbian standards. In the deeper ground levels, the rock mass passes from platy to blocky and is less affected by weathering, and will have even better results. Based on the results of all the examinations, it is concluded that the stone from Kremić granitoid pluton can be used as an architectural stone.

This rock is fine to medium-grained and has low mica content, which gives it a great potential to have plausible physico-mechanical properties and susceptibility to processing (cutting, polishing etc.). Absence of pyrite gives it a time perseverance for external applications. The flaws of this stone are the following: average ornamental value, heterogeneity of the appearance; xenoliths. However, this rock mass is barely opened by the erosion and there is a great possibility that is becomes more ornamental in its deeper parts, alike the nearby Kopaonik pluton that many authors consider Kremić pluton to be a part of. Kopaonik pluton is now included into the territory of a National park with no mining allowed; heterogeneity of the appearance becomes imperceptible after the stone is polished and also when the slabs are riven (Figure 4). It should be noted that in Serbia today, almost all the architectural stone comes from the import under the excuse that Serbia has no good quality stone deposits.
REFERENCES:

Karamata S., 1957: Endomorphic changes in some granodiorites at the contact with limestone caused by the exit of matter from the magma. In: 2nd congress of Yugoslav geologists proceedings, 8–14.9.1957, Sarajevo, Section B, pp 242–254.

Резиме

МОЖНОСТ ЗА УПОТРЕБА НА ГРАНИТОИДОТ КРЕМИЌ КАКО АРХИТЕКТОНСКИ КАМЕН

Лидија Курешевић

Институт ИМС – Београд,
Бул. војвода Мишића 43, Београд, Србија
lidija.marceta@institutims.rs

Ключни зборови: гранитоид; плутон; јужна Србија; архитектонско-градежен камен

Карпестата маса од гранитоидног плутон каделот Кремиќ во јужна Србија е испитана заради утврдување на потенцијалот од аспект на архитектонско-градежен камен (АГК). Извршени се теренски проучувања и лабораториски испитувања на примероците. Иако примероците се земени од површината на теренот, резултатите на физико-механичките својства покажале дека се исполнети барањата по српските стандарди. Исто така, карпестата маса има долеку подобар квалитет во подлабоките делови, каде не била во толка мерка изложена на атмосферални ефекти. Овој камен е без многу изразена декоративност, но има други подобри карактеристики за да се употребува као АГК (сигнозрести структура, мала содржина на момирок (лискун), без пирит).
INSTRUCTIONS TO AUTHORS

The Geologica Macedonica is an official publication of the "Goce Delčev" University, Faculty of Natural and Technical Sciences, Stip, Republic of Macedonia. It is published a yearly. The journal publishes original scientific papers, short communications, reviews, professional and educational papers from all fields of Mining, Geology, Petrology, Mineralogy and Geochemistry.

The journal also publishes, continuously or occasionally, the bibliographies of the members of the Faculty, book reviews, reports on meetings, information on future meetings, important events and dates, and various heading which contribute to the development of the corresponding scientific field.

Original scientific papers report unpublished results of completed original scientific research. Experimental data should be presented in a way that enables reproduction and verification of analyses and deductions on which the conclusions are based. Manuscripts should normally not exceed 6000 words.

Short communications should also contain completed but briefly presented results of original scientific research. Manuscripts should normally not exceed 2000 words.

Reviews are submitted at the invitation of the Editorial Board. They should be critical surveys of an area in which preferably the author himself is active. The reviews can be longer than typical research articles but should generally be limited to 10 000 words including references, tables and figures.

Professional papers report on useful practical results that are not original but help the results of the original scientific research to be adopted into scientific and production use. Manuscripts should normally not exceed 4 000 words.

SUBMISSION OF MANUSCRIPTS

The authors bear the sole responsibility for the content of the contributions. It is assumed that by submitting their paper the authors have not violated any internal rules or regulations of their institutions related to the content of the contributions. Submission of a paper implies that it has not been published previously, that it is not under consideration for publication elsewhere, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, without the written consent of the Publisher.

For the first submission, please send two hard copies of the manuscript and an identical electronic copy of the manuscript on a disc (in MS Word) to the Editor-in-Chief of Geologica Macedonica, the "Goce Delčev" University, Faculty of Natural and Technical Sciences, Goce Delčev 89, MK 2000 Stip, Republic of Macedonia. Electronic version of the manuscript can be also sent by email at todor.serafimovski@ugd.edu.mk

A cover letter must accompany every new submission. It should contain full names of all authors and their affiliation, the manuscript title and the name and contact information for the corresponding author. Please provide a mailing address, e-mail address, and phone and fax numbers. Authors are requested to submit, with the manuscript, the names and full contact details (including e-mail addresses) of 3 potential referees.

PREPARATION OF MANUSCRIPTS

Prepare the entire manuscript in double-space typing, on numbered pages of A4 format with margins of 2.5 cm on each side. Do not use footnotes.

The papers should be written in the shortest possible way and without unnecessary repetition. The original scientific papers, short communications and reviews should be written in English. Abstract and key words in Macedonian, must accompany each manuscript.

Manuscript should contain: title, authors names and addresses, abstract, key words, introduction, experimental or theoretical background, results and discussion, acknowledgement (if desired) and references.

Title. It should be brief and informative but should define the subject of the manuscript. It should include most of the key words.

Authorship. List the first and last name of each author. Omit professional and official titles. Give the complete mailing address of each author. For the corresponding author include an e-mail address and a phone and fax numbers. The name of the corresponding author should carry an asterisk.

Abstract. Each manuscript should be provided with an abstract of about 100–150 words. It should give the aim of the research, methods or procedures, significant results and conclusions. Define any abbreviations used in the abstract.

Key words. Up to 5 key words or phrases should be given to facilitate indexing and online searching.

Introduction. The most important previous results related to the problem in hand should be reviewed avoiding a detailed literature survey, and the aim and importance of the research should be clearly stated.

Experimental section. This section should contain a description of the materials used and methods employed in form which makes the results reproducible, but without detailed description of already known methods.

Manuscripts that are related to theoretical studies, instead of experimental section should contain a subheading theoretical background where the necessary details for verifying the results obtained should be stated.

Results and discussion. The authors should discuss their findings, postulate explanations for the data, elucidate models and compare their results with those of other works. Irrelevant comparisons and speculations unsupported by the new information presented in the manuscript should be avoided. The conclusions should be not given separately but included in this section.

Tables. They should be given with a suitable caption and should be numbered consecutively with Arabic numerals. Footnotes to tables should be typed below the table and should be referred to by superscript lowercase letter. Each table should be typed on a separate sheet. The correct position of the tables should be marked on the manuscript.

Figures. Figures (photographs, diagrams and schemes) should be numbered consecutively with Arabic numerals in order to which they referred. They should accompany the manuscript but should not be imbedded in the text. Each figure should be clearly marked with the figure number and the first author's name. All figures should have captions that
should be supplied on a separate sheet. Correct position of the figures should be marked on the manuscript. The size of the symbols for the physical quantities and units as well as the size of the numbers and letters used in the reduced figures should be comparable with the size of the letters in the main text of the paper. Each figure or group of figures should be planned to fit, after appropriate reduction, into the area of either one or two columns of text. The maximum finished size of a one column illustration is 8.0 cm and that of a two column illustration is 17.0 cm width. Make sure you use uniform lettering and sizing of your original artwork. All figures should be printed on a high quality graphics plotter. Figures should be also sent in electronic form as TIFF or JPG files with minimum 300 dpi or higher resolution.

Color illustrations in print can be included only at the author's expense.

Units. The SI (Systeme Internationale d'Unites) for quantities and units should be used throughout the whole text. If nomenclature is specialized, nomenclature section should be included at the end of the manuscript, giving definitions and dimensions for all terms.

The names of chemical substances should be in accordance with the IUPAC recommendations and rules or Chemical Abstract practice.

Acknowledgement. Financial support, advice or other kinds of assistance can be included in this section.

REFERENCES

Literature references should be numbered and listed in order of citation in the text. They should be selective rather than extensive with the exception to review articles. Avoid references to works that have not been peer-reviewed. Citation of a reference as "in press" implies that it has been accepted for publication.

The surname of one or two authors may be given in the text, whereas in case of more than two authors they should be quoted as, for example, Julg et al. [1]. References should be cited as follows:

Journals:

Scientific meetings:

Books:

For the web references, as a minimum the full URL should be given. Any further information, if available (author names, dates, reference to a source publication, etc.) should also be given.

EDITORIAL PROCESS

Receipt of manuscripts. Receipt of each manuscript is acknowledged by e-mail to the corresponding author within three working days. The manuscript is read and examined for conformity to these Instructions to Authors. Failure to meet the criteria outlined may result in return of the manuscript for correction before evaluation.

Peer review/evaluation. Papers received by the Editorial Board are sent to two referees (one in the case of professional and educational papers). Although authors are invited to suggest reviewers who are competent to examine their manuscript, the Editorial Board is not limited to such suggestions. Identities of the reviewers will not be released to the authors. The review process is expected to be complete within 3 months, but conflicting recommendations and other unpredictable events may cause some delay.

The comments and recommendations of the referees and the Editorial Board are sent to the authors for further action. The authors are allowed 30 days to undertake revisions and return the corrected text to the Editorial Board. The final decision on acceptance or rejection is made by the Editorial Board. This decision, together with any relevant reasons, will be sent to the corresponding author.

Publication process. The accepted manuscript is checked for conformation to the Instructions to Authors and to ensure that all necessary paperwork is present. Any areas that are identified as problematic will be addressed by the Editorial Board in consultation with the corresponding author. The papers will be prepared for publication by a professional copy editor responsible for ensuring that the final printed work is consistent in form and style.

Galley proofs. A galley proof is sent to the corresponding author. It should be checked very carefully and must be returned within 2 days of receipt. The proof stage is not the time to make extensive corrections, additions, or deletions.

Reprints. The corresponding author will receive, free of charge, 20 reprints of the paper published in the Geologica Macedonica. Additionally he will receive a complementary copy of the journal.

Geologica Macedonica, 24 (2), 109–110 (2010)